The Study of the Photocatalytic Degradation of Orange II Dye with Wastewater Using New Pyrochlore Solid Solutions Bi1.5Sb1.5Zn1–xCuxO7 as Photocatalysts

IF 0.5 4区 化学 Q4 CHEMISTRY, ANALYTICAL
Zouaoui Kheira, Sellami Mayouf, Souad Bennabi, Merabet Fadia, Mekki Daouadji Cherifa
{"title":"The Study of the Photocatalytic Degradation of Orange II Dye with Wastewater Using New Pyrochlore Solid Solutions Bi1.5Sb1.5Zn1–xCuxO7 as Photocatalysts","authors":"Zouaoui Kheira,&nbsp;Sellami Mayouf,&nbsp;Souad Bennabi,&nbsp;Merabet Fadia,&nbsp;Mekki Daouadji Cherifa","doi":"10.3103/S1063455X24050114","DOIUrl":null,"url":null,"abstract":"<p>In this present work, photocatalysts based on a new pyrochlore-type solid solution were prepared using the ceramic method at 1000°C. X-ray diffraction (XRD) analysis shows the existence of a solid solution with pyrochlore structure Bi<sub>1.5</sub>Sb<sub>1.5</sub>Zn<sub>1–<i>x</i></sub>Cu<sub><i>x</i></sub>O<sub>7</sub> (0 ≤ <i>x</i> ≤ 1). Scanning Electron Microscope (SEM) images exhibited a slight difference in the external morphology of the samples. The UV-diffuse measurement revealed a change in the absorbance from the UV part for the zinc-rich compound to the visible part for the copper-rich compound. The Energy band gap values were between 3.15 and 1.84 eV. The photocatalytic activity of these prepared mixed oxides was studied for the photo-degradation of the dye Orange II (ORII) as an organic pollutant, in the presence of hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) as an oxidising agent, under sunlight irradiation, by varying different parameters such as the catalysts mass, the oxidant volume, the concentration of the pollutant and the pH. The experimental results obtained by UV-visible spectroscopy revealed that the removal efficiency of ORII increased with increasing the irradiation time for all tested photocatalysts. The pseudo-first-order kinetic model gave the best fit, with the highest correlation coefficients (<i>R</i><sup>2</sup> = 0.99). The results of this study revealed the potential and various advantages of these new efficient photocatalysts.</p>","PeriodicalId":680,"journal":{"name":"Journal of Water Chemistry and Technology","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Water Chemistry and Technology","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.3103/S1063455X24050114","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In this present work, photocatalysts based on a new pyrochlore-type solid solution were prepared using the ceramic method at 1000°C. X-ray diffraction (XRD) analysis shows the existence of a solid solution with pyrochlore structure Bi1.5Sb1.5Zn1–xCuxO7 (0 ≤ x ≤ 1). Scanning Electron Microscope (SEM) images exhibited a slight difference in the external morphology of the samples. The UV-diffuse measurement revealed a change in the absorbance from the UV part for the zinc-rich compound to the visible part for the copper-rich compound. The Energy band gap values were between 3.15 and 1.84 eV. The photocatalytic activity of these prepared mixed oxides was studied for the photo-degradation of the dye Orange II (ORII) as an organic pollutant, in the presence of hydrogen peroxide (H2O2) as an oxidising agent, under sunlight irradiation, by varying different parameters such as the catalysts mass, the oxidant volume, the concentration of the pollutant and the pH. The experimental results obtained by UV-visible spectroscopy revealed that the removal efficiency of ORII increased with increasing the irradiation time for all tested photocatalysts. The pseudo-first-order kinetic model gave the best fit, with the highest correlation coefficients (R2 = 0.99). The results of this study revealed the potential and various advantages of these new efficient photocatalysts.

Abstract Image

以新型火成岩固体溶液 Bi1.5Sb1.5Zn1-xCuxO7 为光催化剂光催化降解废水中的橙 II 染料的研究
在本研究中,采用陶瓷法在 1000°C 下制备了基于新型热绿石型固溶体的光催化剂。X 射线衍射(XRD)分析表明,该固溶体具有热绿石结构 Bi1.5Sb1.5Zn1-xCuxO7(0 ≤ x ≤ 1)。扫描电子显微镜(SEM)图像显示,样品的外部形态略有不同。紫外漫射测量显示,富锌化合物的吸光度从紫外部分变为富铜化合物的可见光部分。能带隙值介于 3.15 和 1.84 eV 之间。通过改变催化剂质量、氧化剂体积、污染物浓度和 pH 值等不同参数,研究了这些制备的混合氧化物在太阳光照射下以过氧化氢(H2O2)为氧化剂对有机污染物染料橙 II(ORII)进行光降解的光催化活性。紫外可见光谱的实验结果表明,对于所有测试的光催化剂,ORII 的去除率随着辐照时间的增加而增加。伪一阶动力学模型的拟合效果最好,相关系数最高(R2 = 0.99)。研究结果揭示了这些新型高效光催化剂的潜力和各种优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Water Chemistry and Technology
Journal of Water Chemistry and Technology CHEMISTRY, APPLIED-CHEMISTRY, ANALYTICAL
自引率
0.00%
发文量
51
审稿时长
>12 weeks
期刊介绍: Journal of Water Chemistry and Technology focuses on water and wastewater treatment, water pollution monitoring, water purification, and similar topics. The journal publishes original scientific theoretical and experimental articles in the following sections: new developments in the science of water; theoretical principles of water treatment and technology; physical chemistry of water treatment processes; analytical water chemistry; analysis of natural and waste waters; water treatment technology and demineralization of water; biological methods of water treatment; and also solicited critical reviews summarizing the latest findings. The journal welcomes manuscripts from all countries in the English or Ukrainian language. All manuscripts are peer-reviewed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信