Density Effects on the Interferometry of Efimov States by Modulating Magnetic Fields

IF 1.7 4区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
G. Bougas, S. I. Mistakidis, P. Giannakeas
{"title":"Density Effects on the Interferometry of Efimov States by Modulating Magnetic Fields","authors":"G. Bougas,&nbsp;S. I. Mistakidis,&nbsp;P. Giannakeas","doi":"10.1007/s00601-024-01959-5","DOIUrl":null,"url":null,"abstract":"<div><p>Dynamical association of Efimov trimers in thermal gases by means of modulated magnetic fields has proven very fruitful in determining the binding energy of trimers. The latter was extracted from the number of remaining atoms, which featured oscillatory fringes stemming from the superposition of trimers with atom-dimers. Subsequent theoretical investigations utilizing the time-dependent three-body problem revealed additional association mechanisms, manifested as superpositions of the Efimov state with the trap states and the latter with atom-dimers. The three atoms were initialized in a way to emulate a thermal gas with uniform density. Here, this analysis is extended by taking into account the effects of the density profile of a semi-classical thermal gas. The supersposition of the Efimov trimer with the first atom-dimer remains the same, while the frequencies of highly oscillatory fringes shift to lower values. The latter refer to the frequencies of trimers and atom-dimers in free space since the density profile smears out the contribution of trap states.</p></div>","PeriodicalId":556,"journal":{"name":"Few-Body Systems","volume":"65 4","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Few-Body Systems","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00601-024-01959-5","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Dynamical association of Efimov trimers in thermal gases by means of modulated magnetic fields has proven very fruitful in determining the binding energy of trimers. The latter was extracted from the number of remaining atoms, which featured oscillatory fringes stemming from the superposition of trimers with atom-dimers. Subsequent theoretical investigations utilizing the time-dependent three-body problem revealed additional association mechanisms, manifested as superpositions of the Efimov state with the trap states and the latter with atom-dimers. The three atoms were initialized in a way to emulate a thermal gas with uniform density. Here, this analysis is extended by taking into account the effects of the density profile of a semi-classical thermal gas. The supersposition of the Efimov trimer with the first atom-dimer remains the same, while the frequencies of highly oscillatory fringes shift to lower values. The latter refer to the frequencies of trimers and atom-dimers in free space since the density profile smears out the contribution of trap states.

调制磁场对艾菲莫夫态干涉测量的密度效应
事实证明,通过调制磁场对热气体中的埃菲莫夫三聚体进行动态关联,对确定三聚体的结合能非常有帮助。后者是从剩余原子数中提取的,其特征是三聚体与原子二聚体叠加产生的振荡边缘。随后利用随时间变化的三体问题进行的理论研究揭示了额外的关联机制,表现为埃菲莫夫态与陷阱态的叠加,以及后者与原子二聚体的叠加。三个原子的初始化方式是模拟密度均匀的热气体。在此,考虑到半经典热气体密度曲线的影响,对这一分析进行了扩展。埃菲莫夫三聚体与第一个原子二聚体的叠加保持不变,而高度振荡条纹的频率则向较低值移动。后者指的是自由空间中三聚体和原子二聚体的频率,因为密度分布会抹去陷阱态的贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Few-Body Systems
Few-Body Systems 物理-物理:综合
CiteScore
2.90
自引率
18.80%
发文量
64
审稿时长
6-12 weeks
期刊介绍: The journal Few-Body Systems presents original research work – experimental, theoretical and computational – investigating the behavior of any classical or quantum system consisting of a small number of well-defined constituent structures. The focus is on the research methods, properties, and results characteristic of few-body systems. Examples of few-body systems range from few-quark states, light nuclear and hadronic systems; few-electron atomic systems and small molecules; and specific systems in condensed matter and surface physics (such as quantum dots and highly correlated trapped systems), up to and including large-scale celestial structures. Systems for which an equivalent one-body description is available or can be designed, and large systems for which specific many-body methods are needed are outside the scope of the journal. The journal is devoted to the publication of all aspects of few-body systems research and applications. While concentrating on few-body systems well-suited to rigorous solutions, the journal also encourages interdisciplinary contributions that foster common approaches and insights, introduce and benchmark the use of novel tools (e.g. machine learning) and develop relevant applications (e.g. few-body aspects in quantum technologies).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信