{"title":"Regularity of Hele-Shaw Flow with Source and Drift","authors":"Inwon Kim, Yuming Paul Zhang","doi":"10.1007/s40818-024-00184-x","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper we study the regularity property of Hele-Shaw flow, where source and drift are present in the evolution. More specifically we consider Hölder continuous source and Lipschitz continuous drift. We show that if the free boundary of the solution is locally close to a Lipschitz graph, then it is indeed Lipschitz, given that the Lipschitz constant is small. When there is no drift, our result establishes <span>\\(C^{1,\\gamma }\\)</span> regularity of the free boundary by combining our result with the obstacle problem theory. In general, when the source and drift are both smooth, we prove that the solution is non-degenerate, indicating higher regularity of the free boundary.</p></div>","PeriodicalId":36382,"journal":{"name":"Annals of Pde","volume":"10 2","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Pde","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40818-024-00184-x","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper we study the regularity property of Hele-Shaw flow, where source and drift are present in the evolution. More specifically we consider Hölder continuous source and Lipschitz continuous drift. We show that if the free boundary of the solution is locally close to a Lipschitz graph, then it is indeed Lipschitz, given that the Lipschitz constant is small. When there is no drift, our result establishes \(C^{1,\gamma }\) regularity of the free boundary by combining our result with the obstacle problem theory. In general, when the source and drift are both smooth, we prove that the solution is non-degenerate, indicating higher regularity of the free boundary.