Regularity of Hele-Shaw Flow with Source and Drift

IF 2.4 1区 数学 Q1 MATHEMATICS
Inwon Kim, Yuming Paul Zhang
{"title":"Regularity of Hele-Shaw Flow with Source and Drift","authors":"Inwon Kim,&nbsp;Yuming Paul Zhang","doi":"10.1007/s40818-024-00184-x","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper we study the regularity property of Hele-Shaw flow, where source and drift are present in the evolution. More specifically we consider Hölder continuous source and Lipschitz continuous drift. We show that if the free boundary of the solution is locally close to a Lipschitz graph, then it is indeed Lipschitz, given that the Lipschitz constant is small. When there is no drift, our result establishes <span>\\(C^{1,\\gamma }\\)</span> regularity of the free boundary by combining our result with the obstacle problem theory. In general, when the source and drift are both smooth, we prove that the solution is non-degenerate, indicating higher regularity of the free boundary.</p></div>","PeriodicalId":36382,"journal":{"name":"Annals of Pde","volume":"10 2","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Pde","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40818-024-00184-x","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we study the regularity property of Hele-Shaw flow, where source and drift are present in the evolution. More specifically we consider Hölder continuous source and Lipschitz continuous drift. We show that if the free boundary of the solution is locally close to a Lipschitz graph, then it is indeed Lipschitz, given that the Lipschitz constant is small. When there is no drift, our result establishes \(C^{1,\gamma }\) regularity of the free boundary by combining our result with the obstacle problem theory. In general, when the source and drift are both smooth, we prove that the solution is non-degenerate, indicating higher regularity of the free boundary.

带有源和漂移的赫勒-肖流的规律性
在本文中,我们研究了在演化过程中存在源和漂移的赫勒-肖流的正则特性。更具体地说,我们考虑了赫尔德连续源和利普希兹连续漂移。我们的研究表明,如果解的自由边界局部接近于一个 Lipschitz 图形,那么在 Lipschitz 常数很小的情况下,它确实是 Lipschitz 的。当不存在漂移时,通过将我们的结果与障碍问题理论相结合,我们的结果确立了自由边界的(C^{1,\gamma }\)正则性。一般来说,当源和漂移都是光滑的,我们证明解是非退化的,这表明自由边界具有更高的正则性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annals of Pde
Annals of Pde Mathematics-Geometry and Topology
CiteScore
3.70
自引率
3.60%
发文量
22
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信