Development of a Ferrofluid-Based Attitude Control Actuator for Verification on the ISS

Sebastian Zajonz, Christian Korn, Steffen Großmann, Janoah Dietrich, Maximilian Kob, Daniel Philipp, Fabrizio Turco, Michael Steinert, Michael O’Donohue, Nicolas Heinz, Elizabeth Gutierrez, Alexander Wagner, Daniel Bölke, Saskia Sütterlin, Maximilian Schneider, Yolantha Remane, Phil Kreul, Bianca Wank, Manuel Buchfink, Denis Acker, Sonja Hofmann, Bahar Karahan, Silas Ruffner, Manfred Ehresmann, Felix Schäfer, Georg Herdrich
{"title":"Development of a Ferrofluid-Based Attitude Control Actuator for Verification on the ISS","authors":"Sebastian Zajonz,&nbsp;Christian Korn,&nbsp;Steffen Großmann,&nbsp;Janoah Dietrich,&nbsp;Maximilian Kob,&nbsp;Daniel Philipp,&nbsp;Fabrizio Turco,&nbsp;Michael Steinert,&nbsp;Michael O’Donohue,&nbsp;Nicolas Heinz,&nbsp;Elizabeth Gutierrez,&nbsp;Alexander Wagner,&nbsp;Daniel Bölke,&nbsp;Saskia Sütterlin,&nbsp;Maximilian Schneider,&nbsp;Yolantha Remane,&nbsp;Phil Kreul,&nbsp;Bianca Wank,&nbsp;Manuel Buchfink,&nbsp;Denis Acker,&nbsp;Sonja Hofmann,&nbsp;Bahar Karahan,&nbsp;Silas Ruffner,&nbsp;Manfred Ehresmann,&nbsp;Felix Schäfer,&nbsp;Georg Herdrich","doi":"10.1007/s42496-024-00208-6","DOIUrl":null,"url":null,"abstract":"<div><p>Ferrofluid-based systems provide an opportunity for increasing the durability and reliability of systems, where mechanical parts are prone to wear and tear. Conventional reaction control systems are based on mechanically mounted rotating disks. Due to inherent friction, they suffer from degradation, which may eventually lead to failure. This problem is further intensified due to the limited possibility for repair and maintenance. Ferrofluid-based systems aim to replace mechanical components by exploiting ferrofluidic suspended motion. Ferrofluids consist of magnetic nanoparticles suspended in a carrier fluid and can be manipulated by external magnetic fields. This paper describes the working principle, design, and integration of a working prototype of a ferrofluid-based attitude control system (ACS), called Ferrowheel. It is based on a stator of a brushless DC motor in combination with a rotor on a ferrofluidic bearing. The prototype will be verified in a microgravity environment on the International Space Station, as part of the Überflieger 2 student competition of the German Aerospace Center. First ground tests deliver positive results and confirm the practicability of such a system.</p></div>","PeriodicalId":100054,"journal":{"name":"Aerotecnica Missili & Spazio","volume":"103 3","pages":"303 - 314"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42496-024-00208-6.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerotecnica Missili & Spazio","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s42496-024-00208-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Ferrofluid-based systems provide an opportunity for increasing the durability and reliability of systems, where mechanical parts are prone to wear and tear. Conventional reaction control systems are based on mechanically mounted rotating disks. Due to inherent friction, they suffer from degradation, which may eventually lead to failure. This problem is further intensified due to the limited possibility for repair and maintenance. Ferrofluid-based systems aim to replace mechanical components by exploiting ferrofluidic suspended motion. Ferrofluids consist of magnetic nanoparticles suspended in a carrier fluid and can be manipulated by external magnetic fields. This paper describes the working principle, design, and integration of a working prototype of a ferrofluid-based attitude control system (ACS), called Ferrowheel. It is based on a stator of a brushless DC motor in combination with a rotor on a ferrofluidic bearing. The prototype will be verified in a microgravity environment on the International Space Station, as part of the Überflieger 2 student competition of the German Aerospace Center. First ground tests deliver positive results and confirm the practicability of such a system.

开发基于铁流体的姿态控制执行器,用于在国际空间站上进行验证
基于铁流体的系统为提高系统的耐用性和可靠性提供了机会,因为机械部件容易磨损。传统的反应控制系统以机械安装的旋转盘为基础。由于固有的摩擦,它们会出现退化,最终可能导致故障。由于维修和维护的可能性有限,这一问题进一步加剧。基于铁流体的系统旨在通过利用铁流体悬浮运动来取代机械部件。铁流体由悬浮在载流体中的磁性纳米颗粒组成,可通过外部磁场进行操控。本文介绍了基于铁流体的姿态控制系统(ACS)(名为 Ferrowheel)的工作原理、设计和集成原型。该系统基于无刷直流电机定子与铁流体轴承转子的组合。作为德国航空航天中心 Überflieger 2 学生竞赛的一部分,该原型将在国际空间站的微重力环境中进行验证。首次地面测试取得了积极成果,证实了这种系统的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信