Well/Ill-Posedness Bifurcation for the Boltzmann Equation with Constant Collision Kernel

IF 2.4 1区 数学 Q1 MATHEMATICS
Xuwen Chen, Justin Holmer
{"title":"Well/Ill-Posedness Bifurcation for the Boltzmann Equation with Constant Collision Kernel","authors":"Xuwen Chen,&nbsp;Justin Holmer","doi":"10.1007/s40818-024-00177-w","DOIUrl":null,"url":null,"abstract":"<div><p>We consider the 3D Boltzmann equation with the constant collision kernel. We investigate the well/ill-posedness problem using the methods from nonlinear dispersive PDEs. We construct a family of special solutions, which are neither near equilibrium nor self-similar, to the equation, and prove that the well/ill-posedness threshold in <span>\\(H^{s}\\)</span> Sobolev space is exactly at regularity <span>\\(s=1\\)</span>, despite the fact that the equation is scale invariant at <span>\\( s=\\frac{1}{2}\\)</span>.</p></div>","PeriodicalId":36382,"journal":{"name":"Annals of Pde","volume":"10 2","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Pde","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40818-024-00177-w","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the 3D Boltzmann equation with the constant collision kernel. We investigate the well/ill-posedness problem using the methods from nonlinear dispersive PDEs. We construct a family of special solutions, which are neither near equilibrium nor self-similar, to the equation, and prove that the well/ill-posedness threshold in \(H^{s}\) Sobolev space is exactly at regularity \(s=1\), despite the fact that the equation is scale invariant at \( s=\frac{1}{2}\).

具有恒定碰撞内核的玻尔兹曼方程的良好/全拟合分岔
我们考虑了具有恒定碰撞核的三维玻尔兹曼方程。我们使用非线性分散 PDEs 的方法研究了好/坏摆性问题。我们为该方程构建了一个既不接近平衡也不自相似的特殊解族,并证明尽管该方程在 \( s=\frac{1}{2}\) 时是尺度不变的,但在\(H^{s}\) Sobolev空间中的井/ill-posedness阈值恰好是正则性\(s=1\)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annals of Pde
Annals of Pde Mathematics-Geometry and Topology
CiteScore
3.70
自引率
3.60%
发文量
22
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信