Investigation into debonding of single polypropylene fiber pullout in concrete using X-ray microtomography and mechanically regularized digital volume correlation
IF 3.4 3区 工程技术Q2 CONSTRUCTION & BUILDING TECHNOLOGY
Yujie Bi, Haizhou Liu, Lingtao Mao, Jiaojiao Liu, Yifan Liu, Jianmin Zuo, Yang Ju, François Hild
{"title":"Investigation into debonding of single polypropylene fiber pullout in concrete using X-ray microtomography and mechanically regularized digital volume correlation","authors":"Yujie Bi, Haizhou Liu, Lingtao Mao, Jiaojiao Liu, Yifan Liu, Jianmin Zuo, Yang Ju, François Hild","doi":"10.1617/s11527-024-02466-z","DOIUrl":null,"url":null,"abstract":"<div><p>To investigate the debonding process, an in-situ pullout experiment on an indented single polypropylene fiber was conducted using X-ray microtomography. This study utilized mechanically regularized global digital volume correlation (Reg-G-DVC) to measure the deformation fields of the fiber, matrix, and interfaces during interfacial debonding. Reg-G-DVC mitigates the impact of low contrast on measurement uncertainties, ensures the convergence of DVC calculations, and enables the element size to be reduced to improve the spatial resolution. The displacement jumps of the shared nodes between the fiber and the matrix were used to quantify interfacial debonding. The profiles of the normal and tangential components of the displacement jumps exhibited periodic features corresponding to the geometry of the indented fiber as it was pulled out. Additionally, the force–displacement curves displayed multi-peak fluctuations corresponding to the fiber geometry, thereby indicating that the periodic indentation of the fiber enhanced friction and the cohesive force between the fiber and the matrix during the pullout process. The displacement jumps along the fiber was maximum at the embedded initiation and decreased along the fiber toward the embedded end. The aforementioned research demonstrated the advantages of utilizing Reg-G-DVC in measuring displacement fields during interfacial debonding, which provides deformation data for identifying and validating interface models.</p></div>","PeriodicalId":691,"journal":{"name":"Materials and Structures","volume":"57 8","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials and Structures","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1617/s11527-024-02466-z","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
To investigate the debonding process, an in-situ pullout experiment on an indented single polypropylene fiber was conducted using X-ray microtomography. This study utilized mechanically regularized global digital volume correlation (Reg-G-DVC) to measure the deformation fields of the fiber, matrix, and interfaces during interfacial debonding. Reg-G-DVC mitigates the impact of low contrast on measurement uncertainties, ensures the convergence of DVC calculations, and enables the element size to be reduced to improve the spatial resolution. The displacement jumps of the shared nodes between the fiber and the matrix were used to quantify interfacial debonding. The profiles of the normal and tangential components of the displacement jumps exhibited periodic features corresponding to the geometry of the indented fiber as it was pulled out. Additionally, the force–displacement curves displayed multi-peak fluctuations corresponding to the fiber geometry, thereby indicating that the periodic indentation of the fiber enhanced friction and the cohesive force between the fiber and the matrix during the pullout process. The displacement jumps along the fiber was maximum at the embedded initiation and decreased along the fiber toward the embedded end. The aforementioned research demonstrated the advantages of utilizing Reg-G-DVC in measuring displacement fields during interfacial debonding, which provides deformation data for identifying and validating interface models.
期刊介绍:
Materials and Structures, the flagship publication of the International Union of Laboratories and Experts in Construction Materials, Systems and Structures (RILEM), provides a unique international and interdisciplinary forum for new research findings on the performance of construction materials. A leader in cutting-edge research, the journal is dedicated to the publication of high quality papers examining the fundamental properties of building materials, their characterization and processing techniques, modeling, standardization of test methods, and the application of research results in building and civil engineering. Materials and Structures also publishes comprehensive reports prepared by the RILEM’s technical committees.