Construction of Machine Learning Interatomic Potentials for Metals

IF 0.4 4区 物理与天体物理 Q4 PHYSICS, MULTIDISCIPLINARY
S. V. Dmitriev, A. A. Kistanov, I. V. Kosarev, S. A. Scherbinin, A. V. Shapeev
{"title":"Construction of Machine Learning Interatomic Potentials for Metals","authors":"S. V. Dmitriev,&nbsp;A. A. Kistanov,&nbsp;I. V. Kosarev,&nbsp;S. A. Scherbinin,&nbsp;A. V. Shapeev","doi":"10.1007/s11182-024-03261-7","DOIUrl":null,"url":null,"abstract":"<p>Molecular dynamics (MD) is a powerful tool for modeling the phase and structural transformations and the evolution of defects and their influence on the metallic material properties. The accuracy of MD modeling directly depends on the quality of interatomic potentials. Modern machine-learning potentials are typically trained on random atomic configurations. This approach has significantly improved the quality of new potentials over traditional EAM potentials. In this work, exact solutions to the equations of atomic motion are offered to train the machine learning potentials.</p>","PeriodicalId":770,"journal":{"name":"Russian Physics Journal","volume":"67 9","pages":"1408 - 1413"},"PeriodicalIF":0.4000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Physics Journal","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11182-024-03261-7","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Molecular dynamics (MD) is a powerful tool for modeling the phase and structural transformations and the evolution of defects and their influence on the metallic material properties. The accuracy of MD modeling directly depends on the quality of interatomic potentials. Modern machine-learning potentials are typically trained on random atomic configurations. This approach has significantly improved the quality of new potentials over traditional EAM potentials. In this work, exact solutions to the equations of atomic motion are offered to train the machine learning potentials.

构建金属的机器学习原子间位势
分子动力学(MD)是模拟相变和结构转变、缺陷演变及其对金属材料性能影响的强大工具。MD 建模的准确性直接取决于原子间势的质量。现代机器学习势能通常在随机原子构型上进行训练。与传统的 EAM 电位相比,这种方法大大提高了新电位的质量。在这项工作中,提供了原子运动方程的精确解来训练机器学习势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Russian Physics Journal
Russian Physics Journal PHYSICS, MULTIDISCIPLINARY-
CiteScore
1.00
自引率
50.00%
发文量
208
审稿时长
3-6 weeks
期刊介绍: Russian Physics Journal covers the broad spectrum of specialized research in applied physics, with emphasis on work with practical applications in solid-state physics, optics, and magnetism. Particularly interesting results are reported in connection with: electroluminescence and crystal phospors; semiconductors; phase transformations in solids; superconductivity; properties of thin films; and magnetomechanical phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信