A Linear Analysis of Torsional Alfvén Waves in Open Twisted Divergent Magnetic Flux Tubes for Coronal Heating

IF 2.7 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS
Bivek Pradhan, Gobinda Chandra Mishra, Pralay Kumar Karmakar, Utpal Deka
{"title":"A Linear Analysis of Torsional Alfvén Waves in Open Twisted Divergent Magnetic Flux Tubes for Coronal Heating","authors":"Bivek Pradhan,&nbsp;Gobinda Chandra Mishra,&nbsp;Pralay Kumar Karmakar,&nbsp;Utpal Deka","doi":"10.1007/s11207-024-02372-1","DOIUrl":null,"url":null,"abstract":"<div><p>The torsional Alfvén wave is highly regarded as the carrier of the energy from the photosphere to the corona in the solar atmosphere. This paper presents a comprehensive linear analysis of the wave behavior and energy transfer within an open, twisted, divergent magnetic flux tube configuration, considering the impact of wave guide structure on the propagation of these waves using the magneto-hydrodynamic approach. The study shows that waves with frequencies between 0.001 Hz and 1 Hz can effectively penetrate the transition region, with the most efficient energy transfer occurring in the 0.1 Hz to 1 Hz frequency range. The research findings suggest that waves with certain intermediate frequencies are able to transmit energy to the coronal region of the Sun, contributing to its active heating.</p></div>","PeriodicalId":777,"journal":{"name":"Solar Physics","volume":"299 9","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11207-024-02372-1.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11207-024-02372-1","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

The torsional Alfvén wave is highly regarded as the carrier of the energy from the photosphere to the corona in the solar atmosphere. This paper presents a comprehensive linear analysis of the wave behavior and energy transfer within an open, twisted, divergent magnetic flux tube configuration, considering the impact of wave guide structure on the propagation of these waves using the magneto-hydrodynamic approach. The study shows that waves with frequencies between 0.001 Hz and 1 Hz can effectively penetrate the transition region, with the most efficient energy transfer occurring in the 0.1 Hz to 1 Hz frequency range. The research findings suggest that waves with certain intermediate frequencies are able to transmit energy to the coronal region of the Sun, contributing to its active heating.

用于日冕加热的开放式扭曲发散磁通管中的扭转阿尔芬波的线性分析
扭转阿尔芬波被认为是太阳大气中从光球到日冕的能量载体。本文采用磁流体力学方法,考虑到波导结构对这些波的传播的影响,对开放、扭曲、发散磁通管构型内的波行为和能量传递进行了全面的线性分析。研究结果表明,频率在 0.001 赫兹到 1 赫兹之间的波能有效穿透过渡区域,而最有效的能量传递发生在 0.1 赫兹到 1 赫兹的频率范围内。研究结果表明,某些中间频率的波能够向太阳日冕区传输能量,从而促进其主动加热。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Solar Physics
Solar Physics 地学天文-天文与天体物理
CiteScore
5.10
自引率
17.90%
发文量
146
审稿时长
1 months
期刊介绍: Solar Physics was founded in 1967 and is the principal journal for the publication of the results of fundamental research on the Sun. The journal treats all aspects of solar physics, ranging from the internal structure of the Sun and its evolution to the outer corona and solar wind in interplanetary space. Papers on solar-terrestrial physics and on stellar research are also published when their results have a direct bearing on our understanding of the Sun.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信