3D Graphene Nanosheets Crosslinked Core–Shell FeS2@N, S Co-Doped Porous Carbon for Improved Lithium/Sodium Storage Performance

IF 2.9 2区 材料科学 Q2 METALLURGY & METALLURGICAL ENGINEERING
Liang Chen, Lan-Yun Yang, Li-Ying Hu, Xu Liu, Chen-Xi Xu, Ying Liu, Wei Wang, Wen-Yuan Xu, Zhao-Hui Hou
{"title":"3D Graphene Nanosheets Crosslinked Core–Shell FeS2@N, S Co-Doped Porous Carbon for Improved Lithium/Sodium Storage Performance","authors":"Liang Chen,&nbsp;Lan-Yun Yang,&nbsp;Li-Ying Hu,&nbsp;Xu Liu,&nbsp;Chen-Xi Xu,&nbsp;Ying Liu,&nbsp;Wei Wang,&nbsp;Wen-Yuan Xu,&nbsp;Zhao-Hui Hou","doi":"10.1007/s40195-024-01735-8","DOIUrl":null,"url":null,"abstract":"<div><p>Transition metal sulfides (TMS) hold great promise as anode materials for Li<sup>+</sup>/Na<sup>+</sup> storage. However, their practical application still faces several challenges, such as inadequate electrical conductivity, substantial volume changes and a propensity for agglomeration. To tackle these challenges, a 3D composite structure composed of graphene nanosheets crosslinked core−shell FeS<sub>2</sub>@N, S co−doped porous carbon (FeS<sub>2</sub>@NSC/GNs) is created by combining self−template polymerization with the graphene encapsulation technique. Systematic characterization and analysis demonstrate the effectiveness of the self−template polymerization strategy in generating a porous core−shell structure, which facilitates the uniform dispersion and optimal contact of the FeS<sub>2</sub> core within the carbon shell. Concurrently, the integration of graphene, alongside the porous carbon shell, introduces a sophisticated dual−protection mechanism against volume expansion and undesirable FeS<sub>2</sub> aggregation. Furthermore, the resulting 3D architecture enables efficient electron/ion transport and provides abundant sites for Li<sup>+</sup>/Na<sup>+</sup> storage. Leveraging these inherent benefits, the FeS<sub>2</sub>@NSC/GNs composite exhibits significantly improved lithium/sodium storage performance in comparison to the counterparts. Evidently, our proposed approach offers valuable guidance for the construction of advanced anodes for lithium/sodium−ion batteries.</p></div>","PeriodicalId":457,"journal":{"name":"Acta Metallurgica Sinica-English Letters","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Metallurgica Sinica-English Letters","FirstCategoryId":"1","ListUrlMain":"https://link.springer.com/article/10.1007/s40195-024-01735-8","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Transition metal sulfides (TMS) hold great promise as anode materials for Li+/Na+ storage. However, their practical application still faces several challenges, such as inadequate electrical conductivity, substantial volume changes and a propensity for agglomeration. To tackle these challenges, a 3D composite structure composed of graphene nanosheets crosslinked core−shell FeS2@N, S co−doped porous carbon (FeS2@NSC/GNs) is created by combining self−template polymerization with the graphene encapsulation technique. Systematic characterization and analysis demonstrate the effectiveness of the self−template polymerization strategy in generating a porous core−shell structure, which facilitates the uniform dispersion and optimal contact of the FeS2 core within the carbon shell. Concurrently, the integration of graphene, alongside the porous carbon shell, introduces a sophisticated dual−protection mechanism against volume expansion and undesirable FeS2 aggregation. Furthermore, the resulting 3D architecture enables efficient electron/ion transport and provides abundant sites for Li+/Na+ storage. Leveraging these inherent benefits, the FeS2@NSC/GNs composite exhibits significantly improved lithium/sodium storage performance in comparison to the counterparts. Evidently, our proposed approach offers valuable guidance for the construction of advanced anodes for lithium/sodium−ion batteries.

三维石墨烯纳米片交联核壳 FeS2@N、S 共掺多孔碳以提高锂/钠存储性能
过渡金属硫化物(TMS)有望成为储存 Li+/Na+ 的阳极材料。然而,它们的实际应用仍然面临着一些挑战,如导电性不足、体积变化大和容易团聚等。为了应对这些挑战,我们将自模板聚合与石墨烯封装技术相结合,创造出了一种由石墨烯纳米片交联核壳 FeS2@N、S 共掺多孔碳(FeS2@NSC/GNs)组成的三维复合结构。系统表征和分析表明了自模板聚合策略在生成多孔核壳结构方面的有效性,这种结构有利于碳壳内 FeS2 核的均匀分散和最佳接触。同时,石墨烯与多孔碳壳的结合,引入了一种复杂的双重保护机制,防止体积膨胀和不良的 FeS2 聚集。此外,由此产生的三维结构可实现高效的电子/离子传输,并为 Li+/Na+ 的存储提供丰富的场所。利用这些固有优势,FeS2@NSC/GNs 复合材料的锂/钠存储性能明显优于同类产品。显然,我们提出的方法为构建先进的锂/钠离子电池阳极提供了宝贵的指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Metallurgica Sinica-English Letters
Acta Metallurgica Sinica-English Letters METALLURGY & METALLURGICAL ENGINEERING-
CiteScore
6.60
自引率
14.30%
发文量
122
审稿时长
2 months
期刊介绍: This international journal presents compact reports of significant, original and timely research reflecting progress in metallurgy, materials science and engineering, including materials physics, physical metallurgy, and process metallurgy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信