Evolution of Perturbations on Conductor Surface at the Initial Stage of Skin Electric Explosion

IF 0.4 4区 物理与天体物理 Q4 PHYSICS, MULTIDISCIPLINARY
S. A. Chaikovskii, G. Sh. Boltachev
{"title":"Evolution of Perturbations on Conductor Surface at the Initial Stage of Skin Electric Explosion","authors":"S. A. Chaikovskii,&nbsp;G. Sh. Boltachev","doi":"10.1007/s11182-024-03250-w","DOIUrl":null,"url":null,"abstract":"<p>The paper proposes the model describing the initial stage of skin electrical explosion of cylindrical conductors. The model considers the magnetic field diffusion, skin effect, Joule heating, conducting material dynamics under the action of the Ampere force and thermoelastic stresses, material transition to the plastic state and plastic flow, phase transition from solid to liquid at the melting point, and transition from liquid to vapor (vaporization). The analysis is given to the nature of thermoelastic stresses and elastoplastic deformations of the material in states preceding its melting. Discussed is the probability of the material fracture and/or deformation of its surface. The dynamics of the outer boundary is calculated for both solid and liquid states of the material. The analysis is presented for the decrement of the perturbation growth on the molten surface, and ways of improving the stability of the external surface of exploding conductors are discussed.</p>","PeriodicalId":770,"journal":{"name":"Russian Physics Journal","volume":"67 9","pages":"1316 - 1329"},"PeriodicalIF":0.4000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Physics Journal","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11182-024-03250-w","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The paper proposes the model describing the initial stage of skin electrical explosion of cylindrical conductors. The model considers the magnetic field diffusion, skin effect, Joule heating, conducting material dynamics under the action of the Ampere force and thermoelastic stresses, material transition to the plastic state and plastic flow, phase transition from solid to liquid at the melting point, and transition from liquid to vapor (vaporization). The analysis is given to the nature of thermoelastic stresses and elastoplastic deformations of the material in states preceding its melting. Discussed is the probability of the material fracture and/or deformation of its surface. The dynamics of the outer boundary is calculated for both solid and liquid states of the material. The analysis is presented for the decrement of the perturbation growth on the molten surface, and ways of improving the stability of the external surface of exploding conductors are discussed.

蒙皮电爆炸初始阶段导体表面扰动的演变
本文提出了描述圆柱导体集肤电爆炸初始阶段的模型。该模型考虑了磁场扩散、趋肤效应、焦耳热、安培力和热弹性应力作用下的导电材料动力学、材料向塑性状态的转变和塑性流动、熔点处从固态到液态的相变以及从液态到汽态的转变(汽化)。分析了材料在熔化前状态下的热弹性应力和弹塑性变形的性质。讨论了材料断裂和/或表面变形的概率。计算了材料固态和液态时外部边界的动态。分析了熔融表面扰动增长的减小,并讨论了提高爆炸导体外表面稳定性的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Russian Physics Journal
Russian Physics Journal PHYSICS, MULTIDISCIPLINARY-
CiteScore
1.00
自引率
50.00%
发文量
208
审稿时长
3-6 weeks
期刊介绍: Russian Physics Journal covers the broad spectrum of specialized research in applied physics, with emphasis on work with practical applications in solid-state physics, optics, and magnetism. Particularly interesting results are reported in connection with: electroluminescence and crystal phospors; semiconductors; phase transformations in solids; superconductivity; properties of thin films; and magnetomechanical phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信