{"title":"Size scale effect on mass burning flux and flame behavior of solid fuels","authors":"Peiyi Sun, Tianhang Zhang, Xinyan Huang","doi":"10.1007/s10973-024-13453-5","DOIUrl":null,"url":null,"abstract":"<div><p>The study investigates the horizontal fuel size effect on free-burning fires for PMMA plates and wood cribs. The fuel size effect on mass burning flux and flame behavior is mainly discussed and compared with typical pool fires. For the PMMA plate and liquid pool, when the fuel size is small (< 10 cm), either the 3D sidewall burning of PMMA or the container wall heated by flame can promote the burning flux at the horizontal projection area. As the fuel size increases, these side wall burning or heating effects decrease, causing the drop in burning flux with fuel scale for both the PMMA plate and liquid pool. For small-scale wood cribs, fire cannot self-sustain due to the large airflow cooling. With the increase in wood crib size, the burning rate first remains constant and then gradually increases, driven by the enhanced internal radiation. As the fuel size increases above 20–30 cm, the flame radiation dominates the burning flux for all fuel types. Fire dynamics simulator (FDS) was adopted to simulate the horizontal size effect by setting a varied fire source (horizontal projection) area. First, the flame geometry and heat release rate (HRR) of simulations were validated against experimental results. Subsequently, the validated fire model generates cases covering a broad range of fire scales. Finally, a new correlation of flame height with the fire heat release rate and fuel size is proposed, and its prediction capability is validated in the numerical fire modeling. This study quantifies the size effect on the burning rate for common solid fuels and provides valuable information for the numerical modeling of multi-scale fires.</p></div>","PeriodicalId":678,"journal":{"name":"Journal of Thermal Analysis and Calorimetry","volume":"149 17","pages":"9575 - 9586"},"PeriodicalIF":3.0000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10973-024-13453-5.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermal Analysis and Calorimetry","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10973-024-13453-5","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The study investigates the horizontal fuel size effect on free-burning fires for PMMA plates and wood cribs. The fuel size effect on mass burning flux and flame behavior is mainly discussed and compared with typical pool fires. For the PMMA plate and liquid pool, when the fuel size is small (< 10 cm), either the 3D sidewall burning of PMMA or the container wall heated by flame can promote the burning flux at the horizontal projection area. As the fuel size increases, these side wall burning or heating effects decrease, causing the drop in burning flux with fuel scale for both the PMMA plate and liquid pool. For small-scale wood cribs, fire cannot self-sustain due to the large airflow cooling. With the increase in wood crib size, the burning rate first remains constant and then gradually increases, driven by the enhanced internal radiation. As the fuel size increases above 20–30 cm, the flame radiation dominates the burning flux for all fuel types. Fire dynamics simulator (FDS) was adopted to simulate the horizontal size effect by setting a varied fire source (horizontal projection) area. First, the flame geometry and heat release rate (HRR) of simulations were validated against experimental results. Subsequently, the validated fire model generates cases covering a broad range of fire scales. Finally, a new correlation of flame height with the fire heat release rate and fuel size is proposed, and its prediction capability is validated in the numerical fire modeling. This study quantifies the size effect on the burning rate for common solid fuels and provides valuable information for the numerical modeling of multi-scale fires.
期刊介绍:
Journal of Thermal Analysis and Calorimetry is a fully peer reviewed journal publishing high quality papers covering all aspects of thermal analysis, calorimetry, and experimental thermodynamics. The journal publishes regular and special issues in twelve issues every year. The following types of papers are published: Original Research Papers, Short Communications, Reviews, Modern Instruments, Events and Book reviews.
The subjects covered are: thermogravimetry, derivative thermogravimetry, differential thermal analysis, thermodilatometry, differential scanning calorimetry of all types, non-scanning calorimetry of all types, thermometry, evolved gas analysis, thermomechanical analysis, emanation thermal analysis, thermal conductivity, multiple techniques, and miscellaneous thermal methods (including the combination of the thermal method with various instrumental techniques), theory and instrumentation for thermal analysis and calorimetry.