Efficient Leaching Extraction of Vanadium Oxide from Spent Petrochemical Catalysts

IF 0.4 Q4 METALLURGY & METALLURGICAL ENGINEERING
V. P. Tarasov, E. S. Gorelikov, I. M. Komelin, A. S. Bashkirova, A. V. Zykova, K. O. Petrunin
{"title":"Efficient Leaching Extraction of Vanadium Oxide from Spent Petrochemical Catalysts","authors":"V. P. Tarasov,&nbsp;E. S. Gorelikov,&nbsp;I. M. Komelin,&nbsp;A. S. Bashkirova,&nbsp;A. V. Zykova,&nbsp;K. O. Petrunin","doi":"10.1134/S0036029523700143","DOIUrl":null,"url":null,"abstract":"<p><b>Abstract</b>—The acidic, alkaline, and soda leaching of spent petrochemical catalysts to extract vanadium oxide is studied. The most efficient reagent, its consumption, leaching time, and temperature of the pulp are chosen using experimental results. The degree of extraction of vanadium oxide to the solution has been achieved at a level of 80% for a solution of sodium hydroxide (200 g/L) as a reagent, the solid-to-liquid ratio S : L = 1 : 3, a pulp temperature of 100°C, and a process time of about 3 h.</p>","PeriodicalId":769,"journal":{"name":"Russian Metallurgy (Metally)","volume":"2023 13","pages":"2090 - 2095"},"PeriodicalIF":0.4000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Metallurgy (Metally)","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S0036029523700143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract—The acidic, alkaline, and soda leaching of spent petrochemical catalysts to extract vanadium oxide is studied. The most efficient reagent, its consumption, leaching time, and temperature of the pulp are chosen using experimental results. The degree of extraction of vanadium oxide to the solution has been achieved at a level of 80% for a solution of sodium hydroxide (200 g/L) as a reagent, the solid-to-liquid ratio S : L = 1 : 3, a pulp temperature of 100°C, and a process time of about 3 h.

Abstract Image

从废石化催化剂中高效浸出提取氧化钒
摘要 研究了酸性、碱性和苏打浸出废石化催化剂以提取氧化钒的方法。根据实验结果选择了最有效的试剂、试剂消耗量、浸出时间和矿浆温度。在氢氧化钠溶液(200 克/升)作为试剂、固液比 S : L = 1 : 3、纸浆温度为 100°C 和工艺时间约为 3 小时的条件下,溶液中氧化钒的萃取率达到了 80%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Russian Metallurgy (Metally)
Russian Metallurgy (Metally) METALLURGY & METALLURGICAL ENGINEERING-
CiteScore
0.70
自引率
25.00%
发文量
140
期刊介绍: Russian Metallurgy (Metally)  publishes results of original experimental and theoretical research in the form of reviews and regular articles devoted to topical problems of metallurgy, physical metallurgy, and treatment of ferrous, nonferrous, rare, and other metals and alloys, intermetallic compounds, and metallic composite materials. The journal focuses on physicochemical properties of metallurgical materials (ores, slags, matters, and melts of metals and alloys); physicochemical processes (thermodynamics and kinetics of pyrometallurgical, hydrometallurgical, electrochemical, and other processes); theoretical metallurgy; metal forming; thermoplastic and thermochemical treatment; computation and experimental determination of phase diagrams and thermokinetic diagrams; mechanisms and kinetics of phase transitions in metallic materials; relations between the chemical composition, phase and structural states of materials and their physicochemical and service properties; interaction between metallic materials and external media; and effects of radiation on these materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信