Hilbert space valued Gaussian processes, their kernels, factorizations, and covariance structure

IF 0.8 Q2 MATHEMATICS
Palle E. T. Jorgensen, James Tian
{"title":"Hilbert space valued Gaussian processes, their kernels, factorizations, and covariance structure","authors":"Palle E. T. Jorgensen,&nbsp;James Tian","doi":"10.1007/s43036-024-00375-0","DOIUrl":null,"url":null,"abstract":"<div><p>Motivated by applications, we introduce a general and new framework for operator valued positive definite kernels. We further give applications both to operator theory and to stochastic processes. The first one yields several dilation constructions in operator theory, and the second to general classes of stochastic processes. For the latter, we apply our operator valued kernel-results in order to build new Hilbert space-valued Gaussian processes, and to analyze their structures of covariance configurations.</p></div>","PeriodicalId":44371,"journal":{"name":"Advances in Operator Theory","volume":"9 4","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Operator Theory","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s43036-024-00375-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Motivated by applications, we introduce a general and new framework for operator valued positive definite kernels. We further give applications both to operator theory and to stochastic processes. The first one yields several dilation constructions in operator theory, and the second to general classes of stochastic processes. For the latter, we apply our operator valued kernel-results in order to build new Hilbert space-valued Gaussian processes, and to analyze their structures of covariance configurations.

希尔伯特空间估值高斯过程及其核、因式分解和协方差结构
在应用的激励下,我们为算子估值正定核引入了一个通用的新框架。我们进一步给出了算子理论和随机过程的应用。前者产生了算子理论中的几种扩张构造,后者产生了随机过程的一般类别。对于后者,我们应用我们的算子值核结果来建立新的希尔伯特空间值高斯过程,并分析它们的协方差配置结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
55
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信