Physical Space Approach to Wave Equation Bilinear Estimates Revisit

IF 2.4 1区 数学 Q1 MATHEMATICS
Sheng Wang, Yi Zhou
{"title":"Physical Space Approach to Wave Equation Bilinear Estimates Revisit","authors":"Sheng Wang,&nbsp;Yi Zhou","doi":"10.1007/s40818-024-00176-x","DOIUrl":null,"url":null,"abstract":"<div><p>In the paper by Klainerman, Rodnianski and Tao [7], they give a physical space proof to a classical result of Klainerman and Machedon [3] for the bilinear space-time estimates of null forms. In this paper, we shall give an alternative and very simple physical space proof of the same bilinear estimates by applying div-curl type lemma of Zhou [14] and Wang and Zhou [12, 13]. We have only attained the limited goal of proving the bilinear estimates for the dyadic piece of the solution. Summing up the dyadic parts leads to the bilinear estimates with a Besov loss. As far as we know, the later development of wave maps [1, 2, 8,9,10,11], and the proof of bounded curvature theorem [5, 6] rely on basic ideas of Klainerman and Machedon [3] as well as Klainerman, Rodnianski and Tao [7].</p></div>","PeriodicalId":36382,"journal":{"name":"Annals of Pde","volume":"10 2","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Pde","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40818-024-00176-x","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In the paper by Klainerman, Rodnianski and Tao [7], they give a physical space proof to a classical result of Klainerman and Machedon [3] for the bilinear space-time estimates of null forms. In this paper, we shall give an alternative and very simple physical space proof of the same bilinear estimates by applying div-curl type lemma of Zhou [14] and Wang and Zhou [12, 13]. We have only attained the limited goal of proving the bilinear estimates for the dyadic piece of the solution. Summing up the dyadic parts leads to the bilinear estimates with a Besov loss. As far as we know, the later development of wave maps [1, 2, 8,9,10,11], and the proof of bounded curvature theorem [5, 6] rely on basic ideas of Klainerman and Machedon [3] as well as Klainerman, Rodnianski and Tao [7].

波方程双线性估计的物理空间方法再探
在 Klainerman、Rodnianski 和 Tao [7] 的论文中,他们给出了 Klainerman 和 Machedon [3] 对空形式的双线性时空估计的经典结果的物理空间证明。在本文中,我们将应用周[14]和王与周[12, 13]的 div-curl 型 Lemma,对同样的双线性估计给出另一种非常简单的物理空间证明。我们只达到了证明解的对偶部分的双线性估计的有限目标。将对偶部分相加就可以得到有 Besov 损失的双线性估计。据我们所知,后来波映射[1, 2, 8,9,10,11] 的发展以及有界曲率定理[5, 6]的证明都依赖于 Klainerman 和 Machedon [3] 以及 Klainerman、Rodnianski 和 Tao [7] 的基本思想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annals of Pde
Annals of Pde Mathematics-Geometry and Topology
CiteScore
3.70
自引率
3.60%
发文量
22
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信