A Wavelet-Inspired \(L^3\)-Based Convex Integration Framework for the Euler Equations

IF 2.4 1区 数学 Q1 MATHEMATICS
Vikram Giri, Hyunju Kwon, Matthew Novack
{"title":"A Wavelet-Inspired \\(L^3\\)-Based Convex Integration Framework for the Euler Equations","authors":"Vikram Giri,&nbsp;Hyunju Kwon,&nbsp;Matthew Novack","doi":"10.1007/s40818-024-00181-0","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, we develop a wavelet-inspired, <span>\\(L^3\\)</span>-based convex integration framework for constructing weak solutions to the three-dimensional incompressible Euler equations. The main innovations include a new multi-scale building block, which we call an intermittent Mikado bundle; a wavelet-inspired inductive set-up which includes assumptions on spatial and temporal support, in addition to <span>\\(L^p\\)</span> and pointwise estimates for Eulerian and Lagrangian derivatives; and sharp decoupling lemmas, inverse divergence estimates, and space-frequency localization technology which is well-adapted to functions satisfying <span>\\(L^p\\)</span> estimates for <i>p</i> other than 1, 2, or <span>\\(\\infty \\)</span>. We develop these tools in the context of the Euler-Reynolds system, enabling us to give both a new proof of the intermittent Onsager theorem from Novack and Vicol (Invent Math 233(1):223–323, 2023) in this paper, and a proof of the <span>\\(L^3\\)</span>-based strong Onsager conjecture in the companion paper Giri et al. (The <span>\\(L^3\\)</span>-based strong Onsager theorem, arxiv).</p></div>","PeriodicalId":36382,"journal":{"name":"Annals of Pde","volume":"10 2","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Pde","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40818-024-00181-0","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we develop a wavelet-inspired, \(L^3\)-based convex integration framework for constructing weak solutions to the three-dimensional incompressible Euler equations. The main innovations include a new multi-scale building block, which we call an intermittent Mikado bundle; a wavelet-inspired inductive set-up which includes assumptions on spatial and temporal support, in addition to \(L^p\) and pointwise estimates for Eulerian and Lagrangian derivatives; and sharp decoupling lemmas, inverse divergence estimates, and space-frequency localization technology which is well-adapted to functions satisfying \(L^p\) estimates for p other than 1, 2, or \(\infty \). We develop these tools in the context of the Euler-Reynolds system, enabling us to give both a new proof of the intermittent Onsager theorem from Novack and Vicol (Invent Math 233(1):223–323, 2023) in this paper, and a proof of the \(L^3\)-based strong Onsager conjecture in the companion paper Giri et al. (The \(L^3\)-based strong Onsager theorem, arxiv).

欧拉方程的基于小波启发的凸积分框架
在这项工作中,我们开发了一个受小波启发的、基于 \(L^3\) 的凸积分框架,用于构建三维不可压缩欧拉方程的弱解。主要创新包括:一个新的多尺度构件,我们称之为间歇 Mikado 束;一个小波启发的归纳设置,除了 \(L^p\) 和对欧拉和拉格朗日导数的点估计之外,还包括对空间和时间支持的假设;以及尖锐的解耦定理、反向发散估计和空间-频率定位技术,这些技术很好地适应了满足 \(L^p\) 估计的函数,而不是 1、2 或 \(\infty \)。我们在欧拉-雷诺兹系统的背景下开发了这些工具,使我们能够在本文中给出诺瓦克和维科尔(Invent Math 233(1):223-323, 2023)的间歇性昂萨格定理的新证明,以及吉里等人的论文(The \(L^3\)-based strong Onsager theorem, arxiv)中的基于\(L^3\)的强昂萨格猜想的证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annals of Pde
Annals of Pde Mathematics-Geometry and Topology
CiteScore
3.70
自引率
3.60%
发文量
22
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信