Spectral reconstruction of operator tuples

IF 0.8 Q2 MATHEMATICS
Michael I. Stessin
{"title":"Spectral reconstruction of operator tuples","authors":"Michael I. Stessin","doi":"10.1007/s43036-024-00380-3","DOIUrl":null,"url":null,"abstract":"<div><p>The spectral theorem implies that the spectrum of a bounded normal operator acting on a Hilbert space provides a substantial information about the operator. For example, the set of eigenvalues of a normal matrix and their respective multiplicities determine the matrix up to a unitary equivalence, while the spectral measure, <span>\\(E_B(\\lambda )\\)</span> of a normal operator <i>B</i> acting on a Hilbert space determines <i>B</i> via the integral spectral resolution, </p><div><div><span>$$\\begin{aligned} B=\\int _{\\sigma (B)} \\lambda dE_B(\\lambda ). \\end{aligned}$$</span></div></div><p>In general, for a non-normal operator the spectrum provides a rather limited information about the operator. In this paper we show that, if we include an arbitrary bounded operator <i>B</i> acting on a separable Hilbert space into a quadruple which contains 3 specific operators along with <i>B</i>, it is possible to reconstruct <i>B</i> from the proper projective joint spectrum of the quadruple (and here we mean reconstruct precisely, not up to an equivalence). We call this process <b>spectral reconstruction</b>.</p></div>","PeriodicalId":44371,"journal":{"name":"Advances in Operator Theory","volume":"9 4","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Operator Theory","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s43036-024-00380-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The spectral theorem implies that the spectrum of a bounded normal operator acting on a Hilbert space provides a substantial information about the operator. For example, the set of eigenvalues of a normal matrix and their respective multiplicities determine the matrix up to a unitary equivalence, while the spectral measure, \(E_B(\lambda )\) of a normal operator B acting on a Hilbert space determines B via the integral spectral resolution,

$$\begin{aligned} B=\int _{\sigma (B)} \lambda dE_B(\lambda ). \end{aligned}$$

In general, for a non-normal operator the spectrum provides a rather limited information about the operator. In this paper we show that, if we include an arbitrary bounded operator B acting on a separable Hilbert space into a quadruple which contains 3 specific operators along with B, it is possible to reconstruct B from the proper projective joint spectrum of the quadruple (and here we mean reconstruct precisely, not up to an equivalence). We call this process spectral reconstruction.

算子元组的频谱重构
谱定理意味着作用于希尔伯特空间的有界正则算子的谱提供了关于算子的大量信息。例如,正矩阵的特征值集和它们各自的乘数决定了矩阵的单元等价性,而作用于希尔伯特空间的正算子 B 的谱度量(E_B(\lambda )\)通过积分谱解析决定了 B,即 $$\begin{aligned}B=int _\{sigma (B)} \lambda dE_B(\lambda ).\end{aligned}$$一般来说,对于非正则算子,频谱提供的算子信息相当有限。在本文中,我们将证明,如果我们把作用于可分离希尔伯特空间的任意有界算子 B 纳入一个四元数中,而这个四元数与 B 一起包含 3 个特定算子,那么就有可能从四元数的适当投影联合谱中重构 B(这里我们指的是精确重构,而不是等价重构)。我们称这一过程为谱重构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
55
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信