Remote sensing monitoring of ecological environment quality in mining areas under the perspective of ecological engineering

IF 2.8 4区 环境科学与生态学 Q3 ENVIRONMENTAL SCIENCES
Anya Zhong, Zhen Wang, Zixuan Zhang, Chunming Hu
{"title":"Remote sensing monitoring of ecological environment quality in mining areas under the perspective of ecological engineering","authors":"Anya Zhong,&nbsp;Zhen Wang,&nbsp;Zixuan Zhang,&nbsp;Chunming Hu","doi":"10.1007/s12665-024-11893-8","DOIUrl":null,"url":null,"abstract":"<div><p>The extraction of minerals on an extensive scale, though a catalyst for economic advancement, precipitates notable ecological concerns. In recent years, due to decarbonization initiatives and the closure of numerous open-pit mines, increasing attention and research focus have been directed toward evaluating the effectiveness of ecological restoration in mining areas. This study leverages Landsat series imagery and employs the pseudo-invariant feature (PIF) method for radiometric normalization of remote sensing images, all within the framework of ecological engineering. In light of the significant consideration given to soil erosion and air pollution factors in the acceptance standards for ecological engineering, the Mine Remote Sensing Ecological Index (MRSEI) is developed based on the Pressure-State-Response (PSR) framework. This index is employed to perform spatiotemporal analysis and dynamic monitoring of the ecological quality in the restoration area of Wangping coal mine. The results illustrate that: Compared to the Remote Sensing Ecological Index (RSEI), the first principal component of the MRSEI consolidates the information of various sub-indicators more effectively. This allows for a more objective representation of the ecological quality. From 1990 to 2021, the average value of the MRSEI in the Wangping coal mining area shows an overall upward trend, increasing from 0.429 in 1990 to 0.731 in 2021, representing an improvement of 70.40%. The validation of the MRSEI indicates that this index accurately reflects the objective patterns of local ecological quality changes. Moreover, it is strongly correlated with various individual ecological indicators. The application and promotion of the MRSEI offer valuable insights for policymakers in developing plans for mine ecological restoration projects and strategies for regional coordinated development.</p></div>","PeriodicalId":542,"journal":{"name":"Environmental Earth Sciences","volume":"83 20","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Earth Sciences","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s12665-024-11893-8","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The extraction of minerals on an extensive scale, though a catalyst for economic advancement, precipitates notable ecological concerns. In recent years, due to decarbonization initiatives and the closure of numerous open-pit mines, increasing attention and research focus have been directed toward evaluating the effectiveness of ecological restoration in mining areas. This study leverages Landsat series imagery and employs the pseudo-invariant feature (PIF) method for radiometric normalization of remote sensing images, all within the framework of ecological engineering. In light of the significant consideration given to soil erosion and air pollution factors in the acceptance standards for ecological engineering, the Mine Remote Sensing Ecological Index (MRSEI) is developed based on the Pressure-State-Response (PSR) framework. This index is employed to perform spatiotemporal analysis and dynamic monitoring of the ecological quality in the restoration area of Wangping coal mine. The results illustrate that: Compared to the Remote Sensing Ecological Index (RSEI), the first principal component of the MRSEI consolidates the information of various sub-indicators more effectively. This allows for a more objective representation of the ecological quality. From 1990 to 2021, the average value of the MRSEI in the Wangping coal mining area shows an overall upward trend, increasing from 0.429 in 1990 to 0.731 in 2021, representing an improvement of 70.40%. The validation of the MRSEI indicates that this index accurately reflects the objective patterns of local ecological quality changes. Moreover, it is strongly correlated with various individual ecological indicators. The application and promotion of the MRSEI offer valuable insights for policymakers in developing plans for mine ecological restoration projects and strategies for regional coordinated development.

生态工程视角下的矿区生态环境质量遥感监测
大规模的矿物开采虽然是经济发展的催化剂,但也引发了显著的生态问题。近年来,由于去碳化倡议和众多露天矿的关闭,人们越来越关注和研究矿区生态恢复效果的评估。本研究利用大地遥感卫星(Landsat)系列图像,并采用伪不变特征(PIF)方法对遥感图像进行辐射归一化处理,所有这些都是在生态工程的框架内进行的。鉴于生态工程验收标准中对土壤侵蚀和空气污染因素的重视,基于压力-状态-响应(PSR)框架开发了矿山遥感生态指数(MRSEI)。利用该指数对王坪煤矿恢复区的生态质量进行时空分析和动态监测。结果表明与遥感生态指数(RSEI)相比,MRSEI 的第一主成分能更有效地整合各个子指标的信息。这样就能更客观地反映生态质量。从 1990 年到 2021 年,王坪采煤区的 MRSEI 平均值总体呈上升趋势,从 1990 年的 0.429 上升到 2021 年的 0.731,提高了 70.40%。对 MRSEI 的验证表明,该指数准确反映了当地生态质量变化的客观规律。此外,它还与各种单项生态指标密切相关。MRSEI 的应用和推广为决策者制定矿山生态恢复项目计划和区域协调发展战略提供了宝贵的启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmental Earth Sciences
Environmental Earth Sciences 环境科学-地球科学综合
CiteScore
5.10
自引率
3.60%
发文量
494
审稿时长
8.3 months
期刊介绍: Environmental Earth Sciences is an international multidisciplinary journal concerned with all aspects of interaction between humans, natural resources, ecosystems, special climates or unique geographic zones, and the earth: Water and soil contamination caused by waste management and disposal practices Environmental problems associated with transportation by land, air, or water Geological processes that may impact biosystems or humans Man-made or naturally occurring geological or hydrological hazards Environmental problems associated with the recovery of materials from the earth Environmental problems caused by extraction of minerals, coal, and ores, as well as oil and gas, water and alternative energy sources Environmental impacts of exploration and recultivation – Environmental impacts of hazardous materials Management of environmental data and information in data banks and information systems Dissemination of knowledge on techniques, methods, approaches and experiences to improve and remediate the environment In pursuit of these topics, the geoscientific disciplines are invited to contribute their knowledge and experience. Major disciplines include: hydrogeology, hydrochemistry, geochemistry, geophysics, engineering geology, remediation science, natural resources management, environmental climatology and biota, environmental geography, soil science and geomicrobiology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信