Multiple Fault Diagnosis in a Wind Turbine Gearbox with Autoencoder Data Augmentation and KPCA Dimension Reduction

IF 2.6 3区 材料科学 Q2 MATERIALS SCIENCE, CHARACTERIZATION & TESTING
Leonardo Oldani Felix, Dionísio Henrique Carvalho de Sá Só Martins, Ulisses Admar Barbosa Vicente Monteiro, Luiz Antonio Vaz Pinto, Luís Tarrataca, Carlos Alfredo Orfão Martins
{"title":"Multiple Fault Diagnosis in a Wind Turbine Gearbox with Autoencoder Data Augmentation and KPCA Dimension Reduction","authors":"Leonardo Oldani Felix,&nbsp;Dionísio Henrique Carvalho de Sá Só Martins,&nbsp;Ulisses Admar Barbosa Vicente Monteiro,&nbsp;Luiz Antonio Vaz Pinto,&nbsp;Luís Tarrataca,&nbsp;Carlos Alfredo Orfão Martins","doi":"10.1007/s10921-024-01131-3","DOIUrl":null,"url":null,"abstract":"<div><p>Gearboxes, as critical components, often operate in demanding conditions, enduring constant exposure to variable loads and speeds. In the realm of condition monitoring, the dataset primarily comprises data from normal operating conditions, with significantly fewer instances of faulty conditions, resulting in imbalanced datasets. To address the challenges posed by this data disparity, researchers have proposed various solutions aimed at enhancing the performance of classification models. One such solution involves balancing the dataset before the training phase through oversampling techniques. In this study, we utilized the Sparse Autoencoder technique for data augmentation and employed Support Vector Machine (SVM) and Random Forest (RF) for classification. We conducted four experiments to evaluate the impact of data imbalance on classifier performance: (1) using the original dataset without data augmentation, (2) employing partial data augmentation, (3) applying full data augmentation, and (4) balancing the dataset while using Kernel Principal Component Analysis (KPCA) for dimensionality reduction. Our findings revealed that both algorithms achieved accuracies exceeding 90%, even when employing the original non-augmented data. When partial data augmentation was employed both algorithms were able to achieve accuracies beyond 98%. Full data augmentation yielded slightly better results compared to partial augmentation. After reducing dimensions from 18 to 11 using KPCA, both classifiers maintained robust performance. SVM achieved an overall accuracy of 98.72%, while RF achieved 96.06% accuracy.</p></div>","PeriodicalId":655,"journal":{"name":"Journal of Nondestructive Evaluation","volume":"43 4","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nondestructive Evaluation","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10921-024-01131-3","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0

Abstract

Gearboxes, as critical components, often operate in demanding conditions, enduring constant exposure to variable loads and speeds. In the realm of condition monitoring, the dataset primarily comprises data from normal operating conditions, with significantly fewer instances of faulty conditions, resulting in imbalanced datasets. To address the challenges posed by this data disparity, researchers have proposed various solutions aimed at enhancing the performance of classification models. One such solution involves balancing the dataset before the training phase through oversampling techniques. In this study, we utilized the Sparse Autoencoder technique for data augmentation and employed Support Vector Machine (SVM) and Random Forest (RF) for classification. We conducted four experiments to evaluate the impact of data imbalance on classifier performance: (1) using the original dataset without data augmentation, (2) employing partial data augmentation, (3) applying full data augmentation, and (4) balancing the dataset while using Kernel Principal Component Analysis (KPCA) for dimensionality reduction. Our findings revealed that both algorithms achieved accuracies exceeding 90%, even when employing the original non-augmented data. When partial data augmentation was employed both algorithms were able to achieve accuracies beyond 98%. Full data augmentation yielded slightly better results compared to partial augmentation. After reducing dimensions from 18 to 11 using KPCA, both classifiers maintained robust performance. SVM achieved an overall accuracy of 98.72%, while RF achieved 96.06% accuracy.

Abstract Image

利用自动编码器数据增强和 KPCA 降维技术进行风力涡轮机齿轮箱多重故障诊断
齿轮箱作为关键部件,通常在苛刻的条件下运行,持续暴露在不同的负载和速度下。在状态监测领域,数据集主要包括正常运行条件下的数据,而故障条件下的数据则少得多,这就造成了数据集的不平衡。为了应对这种数据差异带来的挑战,研究人员提出了各种旨在提高分类模型性能的解决方案。其中一种解决方案是在训练阶段前通过超采样技术平衡数据集。在本研究中,我们利用稀疏自动编码器技术进行数据扩增,并采用支持向量机(SVM)和随机森林(RF)进行分类。我们进行了四次实验来评估数据不平衡对分类器性能的影响:(1) 使用原始数据集而不进行数据扩增;(2) 采用部分数据扩增;(3) 采用全部数据扩增;(4) 在使用核主成分分析法(KPCA)降维的同时平衡数据集。我们的研究结果表明,这两种算法的准确率都超过了 90%,即使使用的是未经扩增的原始数据。当采用部分数据增强时,两种算法的准确率都超过了 98%。与部分数据扩增相比,完全数据扩增的结果略好。使用 KPCA 将维度从 18 维减少到 11 维后,两种分类器都保持了强劲的性能。SVM 的总体准确率为 98.72%,而 RF 的准确率为 96.06%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Nondestructive Evaluation
Journal of Nondestructive Evaluation 工程技术-材料科学:表征与测试
CiteScore
4.90
自引率
7.10%
发文量
67
审稿时长
9 months
期刊介绍: Journal of Nondestructive Evaluation provides a forum for the broad range of scientific and engineering activities involved in developing a quantitative nondestructive evaluation (NDE) capability. This interdisciplinary journal publishes papers on the development of new equipment, analyses, and approaches to nondestructive measurements.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信