Continuous High-Temperature Thermoelectric Power Monitoring of Thermal Embrittlement

IF 2.6 3区 材料科学 Q2 MATERIALS SCIENCE, CHARACTERIZATION & TESTING
Alberto Ruiz, Brianna Lyons, Heriberto Granados-Becerra, Joseph Corcoran
{"title":"Continuous High-Temperature Thermoelectric Power Monitoring of Thermal Embrittlement","authors":"Alberto Ruiz,&nbsp;Brianna Lyons,&nbsp;Heriberto Granados-Becerra,&nbsp;Joseph Corcoran","doi":"10.1007/s10921-024-01127-z","DOIUrl":null,"url":null,"abstract":"<div><p>Thermal embrittlement is a key concern for the structural integrity of engineering components. Monitoring thermal embrittlement may indicate susceptibility to crack initiation and growth and therefore act as a damage precursor. In this study the correlation between thermoelectric power (also known as the Seebeck Coefficient) and the hardness of thermally aged 2507 super duplex stainless steel was demonstrated, showing the suitability of using thermoelectric power as a proxy measurement for embrittlement. This article presents a continuous high-temperature thermoelectric power monitoring system that is suitable for installation on large engineering assets. Using temperature gradients in the sample of &lt; 6.5 °C a measurement standard deviation of 5.8 nV/°C was possible, which was sufficient to monitor the ~ 850 nV/°C increase in thermoelectric power that occurred in this study.</p></div>","PeriodicalId":655,"journal":{"name":"Journal of Nondestructive Evaluation","volume":"43 4","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nondestructive Evaluation","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10921-024-01127-z","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0

Abstract

Thermal embrittlement is a key concern for the structural integrity of engineering components. Monitoring thermal embrittlement may indicate susceptibility to crack initiation and growth and therefore act as a damage precursor. In this study the correlation between thermoelectric power (also known as the Seebeck Coefficient) and the hardness of thermally aged 2507 super duplex stainless steel was demonstrated, showing the suitability of using thermoelectric power as a proxy measurement for embrittlement. This article presents a continuous high-temperature thermoelectric power monitoring system that is suitable for installation on large engineering assets. Using temperature gradients in the sample of < 6.5 °C a measurement standard deviation of 5.8 nV/°C was possible, which was sufficient to monitor the ~ 850 nV/°C increase in thermoelectric power that occurred in this study.

热脆性的连续高温热电监测
热脆是工程部件结构完整性的一个关键问题。监测热脆性可显示裂纹萌发和增长的敏感性,因此可作为损坏的前兆。本研究证明了热电功率(也称为塞贝克系数)与热老化 2507 超级双相不锈钢硬度之间的相关性,显示了使用热电功率作为脆性替代测量方法的适用性。本文介绍了一种适合安装在大型工程资产上的连续高温热电监测系统。样品的温度梯度为 6.5°C,测量标准偏差为 5.8 nV/°C,足以监测本研究中出现的约 850 nV/°C 的热电功率增长。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Nondestructive Evaluation
Journal of Nondestructive Evaluation 工程技术-材料科学:表征与测试
CiteScore
4.90
自引率
7.10%
发文量
67
审稿时长
9 months
期刊介绍: Journal of Nondestructive Evaluation provides a forum for the broad range of scientific and engineering activities involved in developing a quantitative nondestructive evaluation (NDE) capability. This interdisciplinary journal publishes papers on the development of new equipment, analyses, and approaches to nondestructive measurements.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信