Soft ionic atmosphere model for molar conductivity, diffusion coefficient and viscosity in concentrated electrolytes

IF 1.7 4区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY
Prerna, Rama Kant
{"title":"Soft ionic atmosphere model for molar conductivity, diffusion coefficient and viscosity in concentrated electrolytes","authors":"Prerna,&nbsp;Rama Kant","doi":"10.1007/s12039-024-02312-3","DOIUrl":null,"url":null,"abstract":"<div><p>A novel approach using a soft ionic atmosphere model for the diffusion of ions in concentrated aqueous electrolytes is developed to quantify molar conductivity (<span>\\(\\Lambda\\)</span>), diffusion coefficient (<i>D</i>), and relative viscosity (<span>\\(\\eta _{\\text {r}}^*\\)</span>). The entropy-driven expansion of the ionic atmosphere in the concentrated electrolyte is characterized through average ion size (<span>\\({\\overline{r}}_{\\text {H}}\\)</span>), ionic screening length for point particle ions (<span>\\(l_{\\text {D}}\\)</span>) and a hardness exponent (<span>\\(\\gamma\\)</span>). The radius <span>\\((l_{\\text {s}})\\)</span> of expanded ionic sphere for finite size ions: <span>\\(l_{\\text {s}}= l_{\\text {D}}(1+ ({\\overline{r}}_{\\text {H}} /l_{\\text {D}})^3)\\)</span>. <span>\\(l_{\\text {s}}\\)</span> circumvents the limitations of the classical Debye screening length <span>\\((\\kappa ^{-1})\\)</span> in concentrated electrolytes. This model leads to a power law dependence of <span>\\(\\Lambda\\)</span>, <i>D</i> and <span>\\(\\eta _{\\text {r}}^*\\)</span> on <span>\\(l_{\\text {s}}\\)</span>. The extent of the hardness of the ionic atmosphere is characterized by an exponent <span>\\(\\gamma\\)</span>, which is characteristic of an electrolyte solution and lies between 0.2–0.8. The expansion of the ionic sphere increases with concentration causing enhancement of the effective size of ions, resulting in the reduction in diffusion coefficient and molar conductivity. The model captures the experimental molar conductivity data for the fifteen salts in the aqueous medium.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":616,"journal":{"name":"Journal of Chemical Sciences","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Sciences","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s12039-024-02312-3","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A novel approach using a soft ionic atmosphere model for the diffusion of ions in concentrated aqueous electrolytes is developed to quantify molar conductivity (\(\Lambda\)), diffusion coefficient (D), and relative viscosity (\(\eta _{\text {r}}^*\)). The entropy-driven expansion of the ionic atmosphere in the concentrated electrolyte is characterized through average ion size (\({\overline{r}}_{\text {H}}\)), ionic screening length for point particle ions (\(l_{\text {D}}\)) and a hardness exponent (\(\gamma\)). The radius \((l_{\text {s}})\) of expanded ionic sphere for finite size ions: \(l_{\text {s}}= l_{\text {D}}(1+ ({\overline{r}}_{\text {H}} /l_{\text {D}})^3)\). \(l_{\text {s}}\) circumvents the limitations of the classical Debye screening length \((\kappa ^{-1})\) in concentrated electrolytes. This model leads to a power law dependence of \(\Lambda\), D and \(\eta _{\text {r}}^*\) on \(l_{\text {s}}\). The extent of the hardness of the ionic atmosphere is characterized by an exponent \(\gamma\), which is characteristic of an electrolyte solution and lies between 0.2–0.8. The expansion of the ionic sphere increases with concentration causing enhancement of the effective size of ions, resulting in the reduction in diffusion coefficient and molar conductivity. The model captures the experimental molar conductivity data for the fifteen salts in the aqueous medium.

Graphical abstract

浓电解质中摩尔电导率、扩散系数和粘度的软离子氛围模型
针对离子在浓水性电解质中的扩散,开发了一种使用软离子氛围模型的新方法来量化摩尔电导率(\(\Lambda\))、扩散系数(D)和相对粘度(\(\eta _\{text {r}}^*\))。浓电解质中离子大气的熵驱动膨胀通过平均离子尺寸(\({\overline{r}}_{\text {H}})、点粒子离子的离子屏蔽长度(\(l_{\text {D}})和硬度指数(\(\gamma\))来表征。)对于有限大小的离子,膨胀离子球的半径为\((l_{\text {s}})\):\(l_{\text {s}}= l_{\text {D}}(1+ ({\overline{r}}_{\text {H}} /l_{\text {D}})^3)\).\在浓电解质中,\(l_{text {s}}\)规避了经典德拜屏蔽长度 \((\kappa ^{-1})\)的限制。这个模型导致了\(\Lambda\)、D 和\(\eta _{\text {r}}^*\)对\(l_{\text {s}}\)的幂律依赖性。离子氛围的硬度由指数\(\gamma\)来表征,该指数是电解质溶液的特征,介于 0.2-0.8 之间。离子球的膨胀随着浓度的增加而增加,导致离子的有效尺寸增大,从而降低了扩散系数和摩尔电导率。该模型捕捉到了 15 种盐类在水介质中的摩尔电导率实验数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Chemical Sciences
Journal of Chemical Sciences CHEMISTRY, MULTIDISCIPLINARY-
CiteScore
3.10
自引率
5.90%
发文量
107
审稿时长
1 months
期刊介绍: Journal of Chemical Sciences is a monthly journal published by the Indian Academy of Sciences. It formed part of the original Proceedings of the Indian Academy of Sciences – Part A, started by the Nobel Laureate Prof C V Raman in 1934, that was split in 1978 into three separate journals. It was renamed as Journal of Chemical Sciences in 2004. The journal publishes original research articles and rapid communications, covering all areas of chemical sciences. A significant feature of the journal is its special issues, brought out from time to time, devoted to conference symposia/proceedings in frontier areas of the subject, held not only in India but also in other countries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信