Asymptotics of the eigenvalues of seven-diagonal Toeplitz matrices of a special form

IF 0.8 Q2 MATHEMATICS
M. Barrera, S. Grudsky, V. Stukopin, I. Voronin
{"title":"Asymptotics of the eigenvalues of seven-diagonal Toeplitz matrices of a special form","authors":"M. Barrera,&nbsp;S. Grudsky,&nbsp;V. Stukopin,&nbsp;I. Voronin","doi":"10.1007/s43036-024-00374-1","DOIUrl":null,"url":null,"abstract":"<div><p>This work is devoted to the construction of a uniform asymptotics in the dimension of the matrix n tending to infinity of all eigenvalues in the case of a seven-diagonal Toeplitz matrix with a symbol having a zero of the sixth order, while the cases of symbols with zeros of the second and fourth orders were considered earlier. On the other hand, the results obtained refine the results of the classical work of Parter and Widom on the asymptotics of the extreme eigenvalues. We also note that the obtained formulas showed high computational efficiency both in sense of accuracy (already for relatively small values of n) and in sense of speed.</p></div>","PeriodicalId":44371,"journal":{"name":"Advances in Operator Theory","volume":"9 4","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Operator Theory","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s43036-024-00374-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

This work is devoted to the construction of a uniform asymptotics in the dimension of the matrix n tending to infinity of all eigenvalues in the case of a seven-diagonal Toeplitz matrix with a symbol having a zero of the sixth order, while the cases of symbols with zeros of the second and fourth orders were considered earlier. On the other hand, the results obtained refine the results of the classical work of Parter and Widom on the asymptotics of the extreme eigenvalues. We also note that the obtained formulas showed high computational efficiency both in sense of accuracy (already for relatively small values of n) and in sense of speed.

特殊形式的七对角托普利兹矩阵特征值的渐近性
这项工作致力于在矩阵 n 的维度上构建趋于无穷大的所有特征值的统一渐近线,这种情况下的七对角托普利兹矩阵的符号具有六阶零点,而具有二阶和四阶零点的符号的情况早先已被考虑过。另一方面,所获得的结果完善了帕特和维多姆关于极值特征值渐近的经典研究成果。我们还注意到,所获得的公式在精确度(对于相对较小的 n 值)和速度方面都表现出很高的计算效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
55
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信