Inverses of Toeplitz plus Hankel operators with generating matrix functions

IF 0.8 Q2 MATHEMATICS
Victor D. Didenko, Bernd Silbermann
{"title":"Inverses of Toeplitz plus Hankel operators with generating matrix functions","authors":"Victor D. Didenko,&nbsp;Bernd Silbermann","doi":"10.1007/s43036-024-00373-2","DOIUrl":null,"url":null,"abstract":"<div><p>The invertibility of Toeplitz plus Hankel operators <span>\\(T(\\mathcal {A})+H(\\mathcal {B})\\)</span>, <span>\\(\\mathcal {A},\\mathcal {B}\\in L^\\infty _{d\\times d}(\\mathbb {T})\\)</span> acting on vector Hardy spaces <span>\\(H^p_d(\\mathbb {T})\\)</span>, <span>\\(1&lt;p&lt;\\infty \\)</span>, is studied. Assuming that the generating matrix functions <span>\\(\\mathcal {A}\\)</span> and <span>\\(\\mathcal {B}\\)</span> satisfy the equation </p><div><div><span>$$\\begin{aligned} \\mathcal {B}^{-1} \\mathcal {A}= \\widetilde{\\mathcal {A}}^{-1}\\widetilde{\\mathcal {B}}, \\end{aligned}$$</span></div></div><p>where <span>\\(\\widetilde{\\mathcal {A}}(t):=\\mathcal {A}(1/t)\\)</span>, <span>\\(\\widetilde{\\mathcal {B}}(t):=\\mathcal {B}(1/t)\\)</span>, <span>\\(t\\in \\mathbb {T}\\)</span>, we establish sufficient conditions for the one-sided invertibility and invertibility of the operators mentioned and construct the corresponding inverses. If <span>\\(d=1\\)</span>, the above equation reduces to the known matching condition, widely used in the study of Toeplitz plus Hankel operators with scalar generating functions.</p></div>","PeriodicalId":44371,"journal":{"name":"Advances in Operator Theory","volume":"9 4","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Operator Theory","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s43036-024-00373-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The invertibility of Toeplitz plus Hankel operators \(T(\mathcal {A})+H(\mathcal {B})\), \(\mathcal {A},\mathcal {B}\in L^\infty _{d\times d}(\mathbb {T})\) acting on vector Hardy spaces \(H^p_d(\mathbb {T})\), \(1<p<\infty \), is studied. Assuming that the generating matrix functions \(\mathcal {A}\) and \(\mathcal {B}\) satisfy the equation

$$\begin{aligned} \mathcal {B}^{-1} \mathcal {A}= \widetilde{\mathcal {A}}^{-1}\widetilde{\mathcal {B}}, \end{aligned}$$

where \(\widetilde{\mathcal {A}}(t):=\mathcal {A}(1/t)\), \(\widetilde{\mathcal {B}}(t):=\mathcal {B}(1/t)\), \(t\in \mathbb {T}\), we establish sufficient conditions for the one-sided invertibility and invertibility of the operators mentioned and construct the corresponding inverses. If \(d=1\), the above equation reduces to the known matching condition, widely used in the study of Toeplitz plus Hankel operators with scalar generating functions.

具有生成矩阵函数的托普利兹加汉克尔算子的逆运算
托普利兹加汉克尔算子(T(\mathcal {A})+H(\mathcal {B})),(\(\mathcal {A},\mathcal {B}\in L^\infty _{d\times d}(\mathbb {T}))作用于向量哈代空间\(H^p_d(\mathbb {T})\),(1<;p<\infty \),进行了研究。假设生成矩阵函数 \(\mathcal {A}\) 和 \(\mathcal {B}\) 满足等式$$\begin{aligned}。\mathcal {B}^{-1} \mathcal {A}= \widetilde{mathcal {A}^{-1}\widetilde{mathcal {B}}, \end{aligned}$$其中 \(\widetilde{mathcal {A}(t):=\mathcal {A}(1/t)\), \(\widetilde{mathcal {B}}(t):=\mathcal {B}(1/t)\),\(t\in \mathbb {T}/),我们建立了上述算子的单边可逆性和可逆性的充分条件,并构造了相应的逆。如果 \(d=1\), 上式简化为已知的匹配条件,该条件广泛应用于具有标量生成函数的托普利兹加汉克尔算子的研究中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
55
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信