On Isolated Periodic Points of Diffeomorphisms with Expanding Attractors of Codimension 1

IF 0.8 4区 数学 Q3 MATHEMATICS, APPLIED
Marina K. Barinova
{"title":"On Isolated Periodic Points of Diffeomorphisms with Expanding Attractors of Codimension 1","authors":"Marina K. Barinova","doi":"10.1134/S1560354724050022","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper we consider an <span>\\(\\Omega\\)</span>-stable 3-diffeomorphism whose chain-recurrent set consists of isolated periodic points and hyperbolic 2-dimensional nontrivial attractors. Nontrivial attractors in this case can only be expanding, orientable or not. The most known example from the class under consideration is the DA-diffeomorphism obtained from the algebraic Anosov diffeomorphism, given on a 3-torus, by Smale’s surgery. Each such attractor has bunches of degree 1 and 2. We estimate the minimum number of isolated periodic points using information about the structure of attractors. Also, we investigate the topological structure of ambient manifolds for diffeomorphisms with k bunches and k isolated periodic points.</p></div>","PeriodicalId":752,"journal":{"name":"Regular and Chaotic Dynamics","volume":"29 5","pages":"794 - 802"},"PeriodicalIF":0.8000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Regular and Chaotic Dynamics","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1134/S1560354724050022","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we consider an \(\Omega\)-stable 3-diffeomorphism whose chain-recurrent set consists of isolated periodic points and hyperbolic 2-dimensional nontrivial attractors. Nontrivial attractors in this case can only be expanding, orientable or not. The most known example from the class under consideration is the DA-diffeomorphism obtained from the algebraic Anosov diffeomorphism, given on a 3-torus, by Smale’s surgery. Each such attractor has bunches of degree 1 and 2. We estimate the minimum number of isolated periodic points using information about the structure of attractors. Also, we investigate the topological structure of ambient manifolds for diffeomorphisms with k bunches and k isolated periodic points.

论具有标度为 1 的扩展吸引子的衍射的孤立周期点
在本文中,我们考虑了一个 \(\Omega\)-stable 3-diffeomorphism,它的链循环集由孤立的周期点和双曲的二维非难吸引子组成。在这种情况下,非难吸引子只能是扩展的、可定向的或不可定向的。在我们所研究的这一类吸引子中,最著名的例子是由代数阿诺索夫衍射通过斯马尔手术得到的 DA 衍射。每个这样的吸引子都有阶数为 1 和 2 的束。我们利用吸引子结构的信息来估计孤立周期点的最小数量。此外,我们还研究了具有 k 个束和 k 个孤立周期点的衍射的周围流形的拓扑结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
7.10%
发文量
35
审稿时长
>12 weeks
期刊介绍: Regular and Chaotic Dynamics (RCD) is an international journal publishing original research papers in dynamical systems theory and its applications. Rooted in the Moscow school of mathematics and mechanics, the journal successfully combines classical problems, modern mathematical techniques and breakthroughs in the field. Regular and Chaotic Dynamics welcomes papers that establish original results, characterized by rigorous mathematical settings and proofs, and that also address practical problems. In addition to research papers, the journal publishes review articles, historical and polemical essays, and translations of works by influential scientists of past centuries, previously unavailable in English. Along with regular issues, RCD also publishes special issues devoted to particular topics and events in the world of dynamical systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信