In urban environments, space constraints necessitate innovative construction methods. Due to rising demand for infrastructures and scarcity of plane ground, structures are built on sloping or irregular ground. To make use of available land, vertical cuts or excavations are made in the natural soil stratum which can be effectively retained using the soil nailing technique. However, if the area adjacent to the nailed vertical cut is utilised for constructing a multi-storeyed building, the behaviour of the nailed structure may vary. This study examines the impact of the presence of multi-storeyed RC buildings on the response of soil-nailed structures in their proximity during earthquake ground motion. The seismic response of a soil-nailed structure is evaluated in the presence of various heights of medium-rise multi-storeyed buildings. Three-dimensional multi-storeyed buildings and soil-nailed structures are analysed with various arrangements and connectivities between them, taking into account different soil profiles at the site. Dynamic finite element analyses of integrated soil-nailed wall-building systems have been performed using time history data of ground motion. The findings suggest that the integration between the two structures enhances the seismic stability of both the structures under dynamic load as evident in the reduced deformation and acceleration of the structures. It restricts the lateral movement of the nailed wall and reduces its displacement by about 40%. This integration can be implemented in space-constrained sites for optimum utilisation of available space.