A new approach to the similarity problem

IF 0.8 Q2 MATHEMATICS
E. Papapetros
{"title":"A new approach to the similarity problem","authors":"E. Papapetros","doi":"10.1007/s43036-024-00363-4","DOIUrl":null,"url":null,"abstract":"<div><p>We say that a <span>\\(C^*\\)</span>-algebra <span>\\({\\mathcal {A}}\\)</span> satisfies the similarity property ((SP)) if every bounded homomorphism <span>\\(u: {\\mathcal {A}}\\rightarrow {\\mathcal {B}}(H),\\)</span> where <i>H</i> is a Hilbert space, is similar to a <span>\\(*\\)</span>-homomorphism and that a von Neumann algebra <span>\\({\\mathcal {M}}\\)</span> satisfies the weak similarity property ((WSP)) if every <span>\\(\\textrm{w}^*\\)</span>-continuous, unital and bounded homomorphism <span>\\(\\pi : {\\mathcal {M}}\\rightarrow {\\mathcal {B}}(H),\\)</span> where <i>H</i> is a Hilbert space, is similar to a <span>\\(*\\)</span>-homomorphism. The similarity problem is known to be equivalent to the question of whether every von Neumann algebra is hyperreflexive. We improve on that by introducing the following hypothesis <i>(EP): Every separably acting von Neumann algebra with a cyclic vector is hyperreflexive.</i> We prove that under <i>(EP)</i>, every separably acting von Neumann algebra satisfies (WSP) and we pass from the case of separably acting von Neumann algebras to all <span>\\(C^*\\)</span>-algebras.</p></div>","PeriodicalId":44371,"journal":{"name":"Advances in Operator Theory","volume":"9 3","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s43036-024-00363-4.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Operator Theory","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s43036-024-00363-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We say that a \(C^*\)-algebra \({\mathcal {A}}\) satisfies the similarity property ((SP)) if every bounded homomorphism \(u: {\mathcal {A}}\rightarrow {\mathcal {B}}(H),\) where H is a Hilbert space, is similar to a \(*\)-homomorphism and that a von Neumann algebra \({\mathcal {M}}\) satisfies the weak similarity property ((WSP)) if every \(\textrm{w}^*\)-continuous, unital and bounded homomorphism \(\pi : {\mathcal {M}}\rightarrow {\mathcal {B}}(H),\) where H is a Hilbert space, is similar to a \(*\)-homomorphism. The similarity problem is known to be equivalent to the question of whether every von Neumann algebra is hyperreflexive. We improve on that by introducing the following hypothesis (EP): Every separably acting von Neumann algebra with a cyclic vector is hyperreflexive. We prove that under (EP), every separably acting von Neumann algebra satisfies (WSP) and we pass from the case of separably acting von Neumann algebras to all \(C^*\)-algebras.

解决相似性问题的新方法
我们说,如果每个有界同态(u:(u:{\mathcal {A}}\rightarrow {\mathcal {B}}(H),\) where H is a Hilbert space, is similar to a \(*\)-homorphism and that a von Neumann algebra \({\mathcal {M}}\) satisfies the weak similarity property ((WSP)) if every \(\textrm{w}^*\)-continuous, unital and bounded homomorphism \(\pi :(H),\),其中 H 是一个希尔伯特空间,与一个同态相似。众所周知,相似性问题等同于是否每个 von Neumann 代数都是超反折的问题。我们通过引入以下假设 (EP) 来改进这个问题:每一个具有循环向量的可分离作用冯-诺依曼代数都是超反折的。我们证明,在(EP)条件下,每一个可分离作用的冯-诺依曼代数都满足(WSP),并且我们从可分离作用的冯-诺依曼代数的情况转向所有的(C^*\)-代数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
55
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信