A Central Limit Theorem with Explicit Lyapunov Exponent and Variance for Products of \(2\times 2\) Random Non-invertible Matrices

IF 1.3 3区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Audrey Benson, Hunter Gould, Phanuel Mariano, Grace Newcombe, Joshua Vaidman
{"title":"A Central Limit Theorem with Explicit Lyapunov Exponent and Variance for Products of \\(2\\times 2\\) Random Non-invertible Matrices","authors":"Audrey Benson,&nbsp;Hunter Gould,&nbsp;Phanuel Mariano,&nbsp;Grace Newcombe,&nbsp;Joshua Vaidman","doi":"10.1007/s10955-024-03335-3","DOIUrl":null,"url":null,"abstract":"<div><p>The theory of products of random matrices and Lyapunov exponents have been widely studied and applied in the fields of biology, dynamical systems, economics, engineering and statistical physics. We consider the product of an i.i.d. sequence of <span>\\(2\\times 2\\)</span> random non-invertible matrices with real entries. Given some mild moment assumptions we prove an explicit formula for the Lyapunov exponent and prove a central limit theorem with an explicit formula for the variance in terms of the entries of the matrices. We also give examples where exact values for the Lyapunov exponent and variance are computed. An important example where non-invertible matrices are essential is the random Hill’s equation, which has numerous physical applications, including the astrophysical orbit problem.</p></div>","PeriodicalId":667,"journal":{"name":"Journal of Statistical Physics","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10955-024-03335-3","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The theory of products of random matrices and Lyapunov exponents have been widely studied and applied in the fields of biology, dynamical systems, economics, engineering and statistical physics. We consider the product of an i.i.d. sequence of \(2\times 2\) random non-invertible matrices with real entries. Given some mild moment assumptions we prove an explicit formula for the Lyapunov exponent and prove a central limit theorem with an explicit formula for the variance in terms of the entries of the matrices. We also give examples where exact values for the Lyapunov exponent and variance are computed. An important example where non-invertible matrices are essential is the random Hill’s equation, which has numerous physical applications, including the astrophysical orbit problem.

具有显式 Lyapunov 指数和方差的 \(2\times 2\) 随机非可逆矩阵乘积的中心极限定理
随机矩阵的乘积和 Lyapunov 指数理论已在生物学、动力系统、经济学、工程学和统计物理学等领域得到广泛的研究和应用。我们考虑的是一个 i.i.d.序列的(2\times 2\)实项随机非可逆矩阵的乘积。考虑到一些温和的矩假设,我们证明了李亚普诺夫指数的明确公式,并证明了中心极限定理以及矩阵项方差的明确公式。我们还给出了计算李雅普诺夫指数和方差精确值的例子。随机希尔方程是一个非可逆矩阵不可或缺的重要例子,它在物理上有大量应用,包括天体物理轨道问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Statistical Physics
Journal of Statistical Physics 物理-物理:数学物理
CiteScore
3.10
自引率
12.50%
发文量
152
审稿时长
3-6 weeks
期刊介绍: The Journal of Statistical Physics publishes original and invited review papers in all areas of statistical physics as well as in related fields concerned with collective phenomena in physical systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信