{"title":"Crosstalk Analysis in Passively Addressed Soft Resistive Heating Arrays","authors":"Dhirodaatto Sarkar;Jue Wang;Alex Chortos","doi":"10.1109/JMMCT.2024.3470557","DOIUrl":null,"url":null,"abstract":"Finding applications in fields such as manipulation platforms and gas sensors, various strategies have been developed to enhance scale and resolution of resistive heating arrays, including integration of diodes/transistors. However, emerging applications in soft robotics and wearable devices prioritize systems that can be fabricated over large areas using low-cost materials, and benefit from simplified control. Utilizing common row/column electrodes to address heating elements, matrix addressing reduces the complexity of control inputs. Passive matrices require no semiconductor components, further minimizing device complexity. Despite these advantages, thermal and electrical crosstalk hinder passive matrix addressing. In this study, we present a novel systematic analysis of the crosstalk in passive matrix resistive heating arrays, addressing both electrical and thermal couplings. We employ theoretical and computational approaches to investigate the effects of materials and array geometry on crosstalk. Through COMSOL multiphysics simulations, we quantify crosstalk as a function of the conductivity of the constituent materials and array geometry. The computational approach allows us to decouple the effects of electrical and thermal crosstalk. Additionally, Pattern Search is used to optimize array designs, minimizing crosstalk and voltage input and revealing trade-offs at various array scales (illustrated in a 16 × 16 array). Furthermore, we study the significant impact of thermal patterns and control methods on crosstalk by implementing progressive scan. This work provides insights and optimization strategies for the design of resistive heating arrays used as actuators or sensors in soft robotics and wearable devices, highlighting its practical significance in the advancement of these emerging applications.","PeriodicalId":52176,"journal":{"name":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","volume":"9 ","pages":"353-365"},"PeriodicalIF":1.8000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10697464/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Finding applications in fields such as manipulation platforms and gas sensors, various strategies have been developed to enhance scale and resolution of resistive heating arrays, including integration of diodes/transistors. However, emerging applications in soft robotics and wearable devices prioritize systems that can be fabricated over large areas using low-cost materials, and benefit from simplified control. Utilizing common row/column electrodes to address heating elements, matrix addressing reduces the complexity of control inputs. Passive matrices require no semiconductor components, further minimizing device complexity. Despite these advantages, thermal and electrical crosstalk hinder passive matrix addressing. In this study, we present a novel systematic analysis of the crosstalk in passive matrix resistive heating arrays, addressing both electrical and thermal couplings. We employ theoretical and computational approaches to investigate the effects of materials and array geometry on crosstalk. Through COMSOL multiphysics simulations, we quantify crosstalk as a function of the conductivity of the constituent materials and array geometry. The computational approach allows us to decouple the effects of electrical and thermal crosstalk. Additionally, Pattern Search is used to optimize array designs, minimizing crosstalk and voltage input and revealing trade-offs at various array scales (illustrated in a 16 × 16 array). Furthermore, we study the significant impact of thermal patterns and control methods on crosstalk by implementing progressive scan. This work provides insights and optimization strategies for the design of resistive heating arrays used as actuators or sensors in soft robotics and wearable devices, highlighting its practical significance in the advancement of these emerging applications.