Surface freezing of cationic surfactant-adsorbed films at the oil-water interface: Impact on oil-in-water emulsion and pickering emulsion stability

IF 15.9 1区 化学 Q1 CHEMISTRY, PHYSICAL
Hiroki Matsubara , Yuhei Tokiwa , Akihiro Masunaga , Hiromu Sakamoto , Kazuki Shishida , Kouki Ohshima , Albert Prause , Michael Gradzielski
{"title":"Surface freezing of cationic surfactant-adsorbed films at the oil-water interface: Impact on oil-in-water emulsion and pickering emulsion stability","authors":"Hiroki Matsubara ,&nbsp;Yuhei Tokiwa ,&nbsp;Akihiro Masunaga ,&nbsp;Hiromu Sakamoto ,&nbsp;Kazuki Shishida ,&nbsp;Kouki Ohshima ,&nbsp;Albert Prause ,&nbsp;Michael Gradzielski","doi":"10.1016/j.cis.2024.103309","DOIUrl":null,"url":null,"abstract":"<div><div>When n-alkanes or n-alcohols coexist with surfactants that have similar chain lengths, they can form mixed surface-frozen films at the oil-water interface. In this review, we first explain the basic characteristics of this surface freezing transition mainly from a thermodynamic viewpoint. Then, we discussed the effect of surface freezing of a cationic surfactant (cetyltrimethylammonium chloride: CTAC) with tetradecane, hexadecane, or hexadecanol on the kinetic stability of the oil-in-water (O/W) emulsions. We show that the surface frozen film not only increases the kinetic stability of the O/W emulsions but also stably encapsulates coexisting organic molecules in the oil core. Finally, we will introduce one of our recent works in which we observed that the exchange between silica nanoparticles and CTAC molecules occurs at the surface of Pickering emulsions when the oil-water interfacial tension is lowered by the surface freezing. The resulting detachment of silica particles from the oil-water interface broke the Pickering emulsion. The advantages of controlling the stability of O/W emulsions via the use of surface-frozen film are discussed in comparison with normal surfactant emulsifiers in the conclusion part of the review.</div></div>","PeriodicalId":239,"journal":{"name":"Advances in Colloid and Interface Science","volume":"334 ","pages":"Article 103309"},"PeriodicalIF":15.9000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S000186862400232X","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

When n-alkanes or n-alcohols coexist with surfactants that have similar chain lengths, they can form mixed surface-frozen films at the oil-water interface. In this review, we first explain the basic characteristics of this surface freezing transition mainly from a thermodynamic viewpoint. Then, we discussed the effect of surface freezing of a cationic surfactant (cetyltrimethylammonium chloride: CTAC) with tetradecane, hexadecane, or hexadecanol on the kinetic stability of the oil-in-water (O/W) emulsions. We show that the surface frozen film not only increases the kinetic stability of the O/W emulsions but also stably encapsulates coexisting organic molecules in the oil core. Finally, we will introduce one of our recent works in which we observed that the exchange between silica nanoparticles and CTAC molecules occurs at the surface of Pickering emulsions when the oil-water interfacial tension is lowered by the surface freezing. The resulting detachment of silica particles from the oil-water interface broke the Pickering emulsion. The advantages of controlling the stability of O/W emulsions via the use of surface-frozen film are discussed in comparison with normal surfactant emulsifiers in the conclusion part of the review.

Abstract Image

阳离子表面活性剂吸附膜在油水界面的表面冻结:对水包油乳液和酸洗乳液稳定性的影响。
当正构烷烃或正构醇与具有相似链长的表面活性剂共存时,它们会在油水界面形成混合表面冻结膜。在这篇综述中,我们首先主要从热力学角度解释了这种表面冻结转变的基本特征。然后,我们讨论了阳离子表面活性剂(十六烷基三甲基氯化铵:CTAC)与十四烷、十六烷或十六醇表面冻结对水包油(O/W)乳液动力学稳定性的影响。我们的研究表明,表面冷冻膜不仅能提高水包油型乳液的动力学稳定性,还能将共存的有机分子稳定地包裹在油芯中。最后,我们将介绍我们的一项最新研究成果,其中我们观察到,当表面冷冻降低油水界面张力时,硅纳米颗粒和 CTAC 分子之间的交换会在皮克林乳液表面发生。二氧化硅颗粒由此脱离油水界面,从而破坏了皮克林乳液。本综述的结论部分讨论了与普通表面活性剂乳化剂相比,通过使用表面冻结膜来控制 O/W 型乳液稳定性的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
28.50
自引率
2.60%
发文量
175
审稿时长
31 days
期刊介绍: "Advances in Colloid and Interface Science" is an international journal that focuses on experimental and theoretical developments in interfacial and colloidal phenomena. The journal covers a wide range of disciplines including biology, chemistry, physics, and technology. The journal accepts review articles on any topic within the scope of colloid and interface science. These articles should provide an in-depth analysis of the subject matter, offering a critical review of the current state of the field. The author's informed opinion on the topic should also be included. The manuscript should compare and contrast ideas found in the reviewed literature and address the limitations of these ideas. Typically, the articles published in this journal are written by recognized experts in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信