{"title":"A 3D finite element analysis of biomechanical effects on teeth and bone during true intrusion of anteriors using miniscrews","authors":"Ankit Bharadwaj , Sachin Ahuja , Japjee Uppal , Eenal Bhambri , Renu Sewta , Seema Gupta","doi":"10.1016/j.ortho.2024.100925","DOIUrl":null,"url":null,"abstract":"<div><h3>Purpose</h3><div>The primary objective of this study was to investigate the biomechanical effects and stresses on bone, periodontal ligament (PDL), cementum and displacement along X-, Y- and Z-axis during true intrusion of incisors using mini-implants with Finite Element Analysis; the secondary objective of the study was to find out the best method for anterior intrusion in clinical practice to treat anterior deep bite malocclusions.</div></div><div><h3>Materials and methods</h3><div>A 3D finite element method was used to simulate true anterior intrusion with sliding mechanics using mini-implants. Two groups were modelled with mini-implants placed distal to lateral incisors for Model 1, and below the anterior nasal spine (ANS) for Model 2, to achieve intrusion. von Mises stress, principal stress on PDL and alveolar bone, displacements in all 3 planes were determined.</div></div><div><h3>Results</h3><div>Amongst the modalities compared in the present study, the stresses on bone and PDL were showing best behavior for mini-implants placed distal to lateral incisors (Model 1). The teeth showed controlled tooth movement in Model 1.</div></div><div><h3>Conclusion</h3><div>Maximum stress was found in the cortical bone and in the PDL. Nature of the stress changed from compressive to tensile from cervical area to root apex, concentrating mainly at the apical area. Amongst the modalities compared, the best controlled tooth movements for anterior intrusion to treat anterior deep bite malocclusions, was for mini-implants placed distal to lateral incisors (Model 1).</div></div>","PeriodicalId":45449,"journal":{"name":"International Orthodontics","volume":"23 1","pages":"Article 100925"},"PeriodicalIF":1.8000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Orthodontics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1761722724000810","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose
The primary objective of this study was to investigate the biomechanical effects and stresses on bone, periodontal ligament (PDL), cementum and displacement along X-, Y- and Z-axis during true intrusion of incisors using mini-implants with Finite Element Analysis; the secondary objective of the study was to find out the best method for anterior intrusion in clinical practice to treat anterior deep bite malocclusions.
Materials and methods
A 3D finite element method was used to simulate true anterior intrusion with sliding mechanics using mini-implants. Two groups were modelled with mini-implants placed distal to lateral incisors for Model 1, and below the anterior nasal spine (ANS) for Model 2, to achieve intrusion. von Mises stress, principal stress on PDL and alveolar bone, displacements in all 3 planes were determined.
Results
Amongst the modalities compared in the present study, the stresses on bone and PDL were showing best behavior for mini-implants placed distal to lateral incisors (Model 1). The teeth showed controlled tooth movement in Model 1.
Conclusion
Maximum stress was found in the cortical bone and in the PDL. Nature of the stress changed from compressive to tensile from cervical area to root apex, concentrating mainly at the apical area. Amongst the modalities compared, the best controlled tooth movements for anterior intrusion to treat anterior deep bite malocclusions, was for mini-implants placed distal to lateral incisors (Model 1).
期刊介绍:
Une revue de référence dans le domaine de orthodontie et des disciplines frontières Your reference in dentofacial orthopedics International Orthodontics adresse aux orthodontistes, aux dentistes, aux stomatologistes, aux chirurgiens maxillo-faciaux et aux plasticiens de la face, ainsi quà leurs assistant(e)s. International Orthodontics is addressed to orthodontists, dentists, stomatologists, maxillofacial surgeons and facial plastic surgeons, as well as their assistants.