Identifying groundwater characteristics and controlling factors in Jiaozhou Bay's northern coastal region, China: a combined approach of multivariate statistics, isotope analysis, and field empirical investigations.
{"title":"Identifying groundwater characteristics and controlling factors in Jiaozhou Bay's northern coastal region, China: a combined approach of multivariate statistics, isotope analysis, and field empirical investigations.","authors":"Dong Ji, Jian Ma, Junzhuo Xue, Xinghui Wu, Zeyong Wang, Shuai Wei","doi":"10.1038/s41598-024-75425-x","DOIUrl":null,"url":null,"abstract":"<p><p>Explicit identification of hydrochemical processes and their controlling factors within groundwater systems is critical for the sustainable utilization of water resources in coastal urban areas. This study was undertaken in the North Coastal Region of Jiaozhou Bay (NCRJB), located in the eastern part of Shandong Province, China, an area grappling with significant issues of groundwater quality degradation and water scarcity. A total of 105 groundwater samples and 34 surface water samples, collected from 2020 to 2024, were analyzed and studied using various hydrogeological tools, multivariate statistical analyses, and water quality assessment methods. These include the Piper diagram, hydrochemical facies evolution diagram (HFE-D), Principal Components Analysis (PCA), correlation analysis, stable isotope analysis, Water Quality Index (WQI), and USSL diagrams. The results indicated that all surface water and pore groundwater samples were categorized as Na-Cl type, exhibiting high Total Dissolved Solids (TDS) and Electrical Conductivity (EC) values, characteristics that render them poor to unsuitable for drinking and irrigation purposes. The fracture groundwater is predominantly of the Ca-Na-Cl mixed type, with average suitability for irrigation and a limited proportion (22.5%) deemed suitable for drinking. Seawater intrusion, primarily through the surface water system, and the impact of human activities were identified as the predominant controlling factors con-tributing to the degradation of the local groundwater environment. Field empirical investigations further validated the results derived from hydrogeological assessments, multivariate statistical analyses, and isotopic approaches. The long-term shifts in hydrochemical properties, along with the latent threat of seawater intrusion, exhibit an upward trend during the dry season and show a certain degree of mitigation during the wet season. This study highlights that field investigations, in conjunction with hydrochemical tools, multivariate statistical analyses, and stable isotope analysis, can successfully furnish reliable insights into the predominant mechanisms governing regional groundwater evolution within the context of long-term and intricate envi-ronmental settings.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"14 1","pages":"23856"},"PeriodicalIF":3.9000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11470051/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-024-75425-x","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Explicit identification of hydrochemical processes and their controlling factors within groundwater systems is critical for the sustainable utilization of water resources in coastal urban areas. This study was undertaken in the North Coastal Region of Jiaozhou Bay (NCRJB), located in the eastern part of Shandong Province, China, an area grappling with significant issues of groundwater quality degradation and water scarcity. A total of 105 groundwater samples and 34 surface water samples, collected from 2020 to 2024, were analyzed and studied using various hydrogeological tools, multivariate statistical analyses, and water quality assessment methods. These include the Piper diagram, hydrochemical facies evolution diagram (HFE-D), Principal Components Analysis (PCA), correlation analysis, stable isotope analysis, Water Quality Index (WQI), and USSL diagrams. The results indicated that all surface water and pore groundwater samples were categorized as Na-Cl type, exhibiting high Total Dissolved Solids (TDS) and Electrical Conductivity (EC) values, characteristics that render them poor to unsuitable for drinking and irrigation purposes. The fracture groundwater is predominantly of the Ca-Na-Cl mixed type, with average suitability for irrigation and a limited proportion (22.5%) deemed suitable for drinking. Seawater intrusion, primarily through the surface water system, and the impact of human activities were identified as the predominant controlling factors con-tributing to the degradation of the local groundwater environment. Field empirical investigations further validated the results derived from hydrogeological assessments, multivariate statistical analyses, and isotopic approaches. The long-term shifts in hydrochemical properties, along with the latent threat of seawater intrusion, exhibit an upward trend during the dry season and show a certain degree of mitigation during the wet season. This study highlights that field investigations, in conjunction with hydrochemical tools, multivariate statistical analyses, and stable isotope analysis, can successfully furnish reliable insights into the predominant mechanisms governing regional groundwater evolution within the context of long-term and intricate envi-ronmental settings.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.