Nancy E Moran, Brianna Alexander, Shivi Garg, Nathan Marchant, Noor A Hason
{"title":"Relative Uptake of Tomato Carotenoids by In Vitro Intestinal and Prostate Cancer Cells.","authors":"Nancy E Moran, Brianna Alexander, Shivi Garg, Nathan Marchant, Noor A Hason","doi":"10.1016/j.tjnut.2024.10.012","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Consumption of tomatoes and tomato carotenoids is associated with a reduced risk of prostate cancer. Prostate tissue accumulates tomato carotenoids, including lycopene, β-carotene, and phytoene. Phytoene accumulation is relatively greater in the prostate than that of lycopene, but the metabolic determinants of tissue carotenoid profiles are poorly understood.</p><p><strong>Objectives: </strong>The purpose of this study was to determine if differences in stability, cellular uptake, and clearance of phytoene compared with lycopene or β-carotene by prostate and intestinal cells may explain differences in observed tissue carotenoid profiles.</p><p><strong>Methods: </strong>Gene and protein expression for carotenoid metabolism in prostate cell lines were analyzed by qRT-PCR and Western blot, respectively. Uptake, efflux, and clearance of phytoene, lycopene, or β-carotene by prostate cell (LNCaP, RWPE-1, and PC-3) and absorptive enterocyte (Caco-2) cultures were compared. The effect of scavenger receptor class B member 1 (SCARB1) inhibition on carotenoid uptake by LNCaP, RWPE-1, and Caco-2 cells was tested.</p><p><strong>Results: </strong>SCARB1 was expressed across prostate cell lines. Lycopene, phytoene, and β-carotene uptakes were similar in LNCaP and PC-3 cells, whereas RWPE-1 cells absorbed a smaller portion of the phytoene dose than lycopene or β-carotene doses. The clearance rates of carotenoids from LNCaP cells did not differ. Intestinal cell uptake of phytoene was greatest, followed by β-carotene and lycopene. SR-BI inhibitor treatment did not significantly reduce the uptake or efflux of carotenoids by LNCaP or Caco-2 cells at the dose concentration provided.</p><p><strong>Conclusions: </strong>Overall, this study suggests that greater bioavailability at the point of the intestine and greater stability of phytoene are determinants of the relative enrichment of phytoene in prostate tissue.</p>","PeriodicalId":16620,"journal":{"name":"Journal of Nutrition","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nutrition","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.tjnut.2024.10.012","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NUTRITION & DIETETICS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Consumption of tomatoes and tomato carotenoids is associated with a reduced risk of prostate cancer. Prostate tissue accumulates tomato carotenoids, including lycopene, β-carotene, and phytoene. Phytoene accumulation is relatively greater in the prostate than that of lycopene, but the metabolic determinants of tissue carotenoid profiles are poorly understood.
Objectives: The purpose of this study was to determine if differences in stability, cellular uptake, and clearance of phytoene compared with lycopene or β-carotene by prostate and intestinal cells may explain differences in observed tissue carotenoid profiles.
Methods: Gene and protein expression for carotenoid metabolism in prostate cell lines were analyzed by qRT-PCR and Western blot, respectively. Uptake, efflux, and clearance of phytoene, lycopene, or β-carotene by prostate cell (LNCaP, RWPE-1, and PC-3) and absorptive enterocyte (Caco-2) cultures were compared. The effect of scavenger receptor class B member 1 (SCARB1) inhibition on carotenoid uptake by LNCaP, RWPE-1, and Caco-2 cells was tested.
Results: SCARB1 was expressed across prostate cell lines. Lycopene, phytoene, and β-carotene uptakes were similar in LNCaP and PC-3 cells, whereas RWPE-1 cells absorbed a smaller portion of the phytoene dose than lycopene or β-carotene doses. The clearance rates of carotenoids from LNCaP cells did not differ. Intestinal cell uptake of phytoene was greatest, followed by β-carotene and lycopene. SR-BI inhibitor treatment did not significantly reduce the uptake or efflux of carotenoids by LNCaP or Caco-2 cells at the dose concentration provided.
Conclusions: Overall, this study suggests that greater bioavailability at the point of the intestine and greater stability of phytoene are determinants of the relative enrichment of phytoene in prostate tissue.
期刊介绍:
The Journal of Nutrition (JN/J Nutr) publishes peer-reviewed original research papers covering all aspects of experimental nutrition in humans and other animal species; special articles such as reviews and biographies of prominent nutrition scientists; and issues, opinions, and commentaries on controversial issues in nutrition. Supplements are frequently published to provide extended discussion of topics of special interest.