{"title":"Frontal midline theta power during the cue-target-interval reflects increased cognitive effort in rewarded task-switching","authors":"Stefan Arnau, Nathalie Liegel, Edmund Wascher","doi":"10.1016/j.cortex.2024.08.004","DOIUrl":null,"url":null,"abstract":"<div><div>Cognitive performance largely depends on how much effort is invested during task-execution. This also means that we rarely perform as good as we could. Cognitive effort is adjusted to the expected outcome of performance, meaning that it is driven by motivation. The results from recent studies suggest that the expenditure of cognitive control is particularly prone to being affected by modulations of cognitive effort. Although recent EEG studies investigated the neural underpinnings of the interaction of effort and control, reports on how cognitive effort is reflected by oscillatory activity of the EEG are quite sparse. It is the goal of the present study to bridge this gap by performing an exploratory analysis of high-density EEG data from a switching-task using manipulations of monetary incentives. A beamformer approach is used to localize the sensor-level effects in source-space. The results indicate that the manipulation of cognitive effort was successful. The participants reported significantly higher motivation and cognitive effort in high versus low reward trials. Performance was also significantly increased. The analysis of the EEG data revealed that the increase of cognitive effort was reflected by an increased mid-frontal theta activity during the cue-target interval, suggesting an increased use of proactive control. This interpretation is supported by the result from a regression analysis performed on single-trial data, showing higher mid-frontal theta power prior to target-onset being associated with faster responses. Alpha-desynchronization throughout the trial was also more pronounced in high reward trials, signaling a bias of attention towards the processing of external stimuli. Source reconstruction suggests that these effects are located in areas related to cognitive control, and visual processing.</div></div>","PeriodicalId":10758,"journal":{"name":"Cortex","volume":"180 ","pages":"Pages 94-110"},"PeriodicalIF":3.2000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cortex","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010945224002508","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Cognitive performance largely depends on how much effort is invested during task-execution. This also means that we rarely perform as good as we could. Cognitive effort is adjusted to the expected outcome of performance, meaning that it is driven by motivation. The results from recent studies suggest that the expenditure of cognitive control is particularly prone to being affected by modulations of cognitive effort. Although recent EEG studies investigated the neural underpinnings of the interaction of effort and control, reports on how cognitive effort is reflected by oscillatory activity of the EEG are quite sparse. It is the goal of the present study to bridge this gap by performing an exploratory analysis of high-density EEG data from a switching-task using manipulations of monetary incentives. A beamformer approach is used to localize the sensor-level effects in source-space. The results indicate that the manipulation of cognitive effort was successful. The participants reported significantly higher motivation and cognitive effort in high versus low reward trials. Performance was also significantly increased. The analysis of the EEG data revealed that the increase of cognitive effort was reflected by an increased mid-frontal theta activity during the cue-target interval, suggesting an increased use of proactive control. This interpretation is supported by the result from a regression analysis performed on single-trial data, showing higher mid-frontal theta power prior to target-onset being associated with faster responses. Alpha-desynchronization throughout the trial was also more pronounced in high reward trials, signaling a bias of attention towards the processing of external stimuli. Source reconstruction suggests that these effects are located in areas related to cognitive control, and visual processing.
期刊介绍:
CORTEX is an international journal devoted to the study of cognition and of the relationship between the nervous system and mental processes, particularly as these are reflected in the behaviour of patients with acquired brain lesions, normal volunteers, children with typical and atypical development, and in the activation of brain regions and systems as recorded by functional neuroimaging techniques. It was founded in 1964 by Ennio De Renzi.