Fangchinoline inhibits metastasis and reduces inflammation-induced epithelial-mesenchymal transition by targeting the FOXM1-ADAM17 axis in hepatocellular carcinoma
Liyun Zheng , Vinothkumar Rajamanickam , Mengyuan Wang , Huajun Zhang , Shiji Fang , Michael Linnebacher , A.M. Abd El-Aty , Xinbin Zhang , Yeyu Zhang , Jianbo Wang , Minjiang Chen , Zhongwei Zhao , Jiansong Ji
{"title":"Fangchinoline inhibits metastasis and reduces inflammation-induced epithelial-mesenchymal transition by targeting the FOXM1-ADAM17 axis in hepatocellular carcinoma","authors":"Liyun Zheng , Vinothkumar Rajamanickam , Mengyuan Wang , Huajun Zhang , Shiji Fang , Michael Linnebacher , A.M. Abd El-Aty , Xinbin Zhang , Yeyu Zhang , Jianbo Wang , Minjiang Chen , Zhongwei Zhao , Jiansong Ji","doi":"10.1016/j.cellsig.2024.111467","DOIUrl":null,"url":null,"abstract":"<div><div>Hepatocellular carcinoma (HCC) is a leading cause of cancer-related mortality worldwide. Efforts have been focused on developing new anti-HCC agents and understanding their pharmacology. However, few agents have been able to effectively combat tumor growth and invasiveness due to the rapid progression of HCC. In this study, we discovered that fangchinoline (FAN), a bisbenzylisoquinoline alkaloid derived from Stephania tetrandra S. Moore, effectively inhibited the migration, invasion, and epithelial-mesenchymal transition (EMT) of HCC cells. FAN treatment also led to the suppression of IL6 and IL1β release, as well as the expression of inflammation-related proteins such as COX-2 and iNOS, and the activation of the NF-κB pathway, thereby reducing inflammation-related EMT. Additionally, FAN directly bound to forkhead box protein M1 (FOXM1), resulting in decreased levels of FOXM1 proteins and disruption of the FOXM1-ADAM17 axis. Our <em>in vivo</em> findings confirmed that FAN effectively hindered the growth and lung metastasis of HCCLM3-xenograft tumors. Importantly, the upregulation of FOXM1 in HCC tissue suggested that targeting FOXM1 inhibition with FAN or its inhibitors could be a promising therapeutic approach for HCC. Overall, this study elucidated the anti-tumor effects and potential pharmacological mechanisms of FAN, and proposed that targeting FOXM1 inhibition may be an effective therapeutic strategy for HCC with potential clinical applications.</div></div>","PeriodicalId":9902,"journal":{"name":"Cellular signalling","volume":"124 ","pages":"Article 111467"},"PeriodicalIF":4.4000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular signalling","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898656824004406","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related mortality worldwide. Efforts have been focused on developing new anti-HCC agents and understanding their pharmacology. However, few agents have been able to effectively combat tumor growth and invasiveness due to the rapid progression of HCC. In this study, we discovered that fangchinoline (FAN), a bisbenzylisoquinoline alkaloid derived from Stephania tetrandra S. Moore, effectively inhibited the migration, invasion, and epithelial-mesenchymal transition (EMT) of HCC cells. FAN treatment also led to the suppression of IL6 and IL1β release, as well as the expression of inflammation-related proteins such as COX-2 and iNOS, and the activation of the NF-κB pathway, thereby reducing inflammation-related EMT. Additionally, FAN directly bound to forkhead box protein M1 (FOXM1), resulting in decreased levels of FOXM1 proteins and disruption of the FOXM1-ADAM17 axis. Our in vivo findings confirmed that FAN effectively hindered the growth and lung metastasis of HCCLM3-xenograft tumors. Importantly, the upregulation of FOXM1 in HCC tissue suggested that targeting FOXM1 inhibition with FAN or its inhibitors could be a promising therapeutic approach for HCC. Overall, this study elucidated the anti-tumor effects and potential pharmacological mechanisms of FAN, and proposed that targeting FOXM1 inhibition may be an effective therapeutic strategy for HCC with potential clinical applications.
期刊介绍:
Cellular Signalling publishes original research describing fundamental and clinical findings on the mechanisms, actions and structural components of cellular signalling systems in vitro and in vivo.
Cellular Signalling aims at full length research papers defining signalling systems ranging from microorganisms to cells, tissues and higher organisms.