Characterisation and modification of the porous metal foams used for the EN 15051-2 dustiness rotating drum test.

IF 1.8 4区 医学 Q3 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH
Delphine Bard, Graeme Hunwin, Andrew Thorpe, Kirsty Dewberry, Garry Burdett, Michael Hemingway
{"title":"Characterisation and modification of the porous metal foams used for the EN 15051-2 dustiness rotating drum test.","authors":"Delphine Bard, Graeme Hunwin, Andrew Thorpe, Kirsty Dewberry, Garry Burdett, Michael Hemingway","doi":"10.1093/annweh/wxae076","DOIUrl":null,"url":null,"abstract":"<p><p>Two approaches were used to evaluate the performance of the reticulated metal foams used to size select and collect dust generated in the dustiness rotating drum tester according to the EN 15051-2 standard \"Workplace exposure-Measurement of the dustiness of bulk materials-Rotating drum test\". Firstly, the detailed performance of the metal foams was measured in a calm air chamber using a polydisperse aerosol of glass particles and assessed against the respirable conventions described in the EN 481 standard \"Workplace atmospheres-Size fraction definitions for measurement of airborne particles\". Secondly, the performance of the EN 15051-2 metal foam size selection for the respirable fraction was compared using the rotating drum dustiness test, with that of a cyclone set-up, using 4 polydisperse glass powders of different size distribution and dustiness potential. The research discusses further improvements to the EN 15051-2 standard and an approach to more closely match the EN 481 convention. In general, for the respirable fraction, the tests in this study demonstrated a conservative oversampling by the current EN 15051-2 metal foam set-up in comparison with the EN 481 convention. Calculations and tests showed an improved fit was achieved by reducing the inner diameter of the flanges separating the metal foams and the filter. This study also showed the importance of sealing the circumference of the metal foams when testing highly dusty powders. A direct comparison of the respirable dustiness fraction, measured by the current EN 15051-2 metal foams set-up and by a cyclone set-up, showed broad agreement. However, for extremely dusty powders, the metal foams can clog, and dust can accumulate between the 20 and 80 pores per inch foams.</p>","PeriodicalId":8362,"journal":{"name":"Annals Of Work Exposures and Health","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals Of Work Exposures and Health","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/annweh/wxae076","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0

Abstract

Two approaches were used to evaluate the performance of the reticulated metal foams used to size select and collect dust generated in the dustiness rotating drum tester according to the EN 15051-2 standard "Workplace exposure-Measurement of the dustiness of bulk materials-Rotating drum test". Firstly, the detailed performance of the metal foams was measured in a calm air chamber using a polydisperse aerosol of glass particles and assessed against the respirable conventions described in the EN 481 standard "Workplace atmospheres-Size fraction definitions for measurement of airborne particles". Secondly, the performance of the EN 15051-2 metal foam size selection for the respirable fraction was compared using the rotating drum dustiness test, with that of a cyclone set-up, using 4 polydisperse glass powders of different size distribution and dustiness potential. The research discusses further improvements to the EN 15051-2 standard and an approach to more closely match the EN 481 convention. In general, for the respirable fraction, the tests in this study demonstrated a conservative oversampling by the current EN 15051-2 metal foam set-up in comparison with the EN 481 convention. Calculations and tests showed an improved fit was achieved by reducing the inner diameter of the flanges separating the metal foams and the filter. This study also showed the importance of sealing the circumference of the metal foams when testing highly dusty powders. A direct comparison of the respirable dustiness fraction, measured by the current EN 15051-2 metal foams set-up and by a cyclone set-up, showed broad agreement. However, for extremely dusty powders, the metal foams can clog, and dust can accumulate between the 20 and 80 pores per inch foams.

用于 EN 15051-2 灰尘度旋转滚筒测试的多孔金属泡沫的特性和改性。
根据 EN 15051-2 标准 "工作场所暴露--散装材料尘埃度测量--旋转滚筒测试",采用了两种方法来评估网状金属泡沫的性能,以选择和收集尘埃度旋转滚筒测试仪中产生的尘埃的大小。首先,在平静的空气室中使用多分散玻璃微粒气溶胶测量金属泡沫的详细性能,并根据 EN 481 标准 "工作场所大气--测量空气传播微粒的尺寸分数定义 "中描述的可吸入标准进行评估。其次,使用旋转鼓尘埃度测试,比较了 EN 15051-2 金属泡沫对可吸入部分进行粒度选择的性能,以及使用 4 种不同粒度分布和尘埃度潜力的多分散玻璃粉进行旋风设置的性能。研究讨论了 EN 15051-2 标准的进一步改进,以及更接近 EN 481 标准的方法。总体而言,就可吸入部分而言,本研究的测试表明,与 EN 481 标准相比,目前的 EN 15051-2 金属泡沫设置存在保守的过度采样。计算和测试表明,通过减小分隔金属泡沫和过滤器的法兰内径,可以改善匹配度。这项研究还显示了在测试高粉尘粉末时密封金属泡沫圆周的重要性。通过直接比较当前 EN 15051-2 金属泡沫装置和旋风装置测量的可吸入粉尘分数,结果显示两者基本一致。不过,对于粉尘极高的粉末,金属泡沫可能会堵塞,粉尘可能会积聚在每英寸 20 到 80 个孔的泡沫之间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annals Of Work Exposures and Health
Annals Of Work Exposures and Health Medicine-Public Health, Environmental and Occupational Health
CiteScore
4.60
自引率
19.20%
发文量
79
期刊介绍: About the Journal Annals of Work Exposures and Health is dedicated to presenting advances in exposure science supporting the recognition, quantification, and control of exposures at work, and epidemiological studies on their effects on human health and well-being. A key question we apply to submission is, "Is this paper going to help readers better understand, quantify, and control conditions at work that adversely or positively affect health and well-being?" We are interested in high quality scientific research addressing: the quantification of work exposures, including chemical, biological, physical, biomechanical, and psychosocial, and the elements of work organization giving rise to such exposures; the relationship between these exposures and the acute and chronic health consequences for those exposed and their families and communities; populations at special risk of work-related exposures including women, under-represented minorities, immigrants, and other vulnerable groups such as temporary, contingent and informal sector workers; the effectiveness of interventions addressing exposure and risk including production technologies, work process engineering, and personal protective systems; policies and management approaches to reduce risk and improve health and well-being among workers, their families or communities; methodologies and mechanisms that underlie the quantification and/or control of exposure and risk. There is heavy pressure on space in the journal, and the above interests mean that we do not usually publish papers that simply report local conditions without generalizable results. We are also unlikely to publish reports on human health and well-being without information on the work exposure characteristics giving rise to the effects. We particularly welcome contributions from scientists based in, or addressing conditions in, developing economies that fall within the above scope.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信