{"title":"Tailored Nanoarchitectures: MoS₂/Graphene and MoS<sub>2</sub>/Graphene Oxide Thin Films via Liquid-Liquid Interfacial Route.","authors":"Ariane Schmidt, Amanda F Pereira, Aldo J G Zarbin","doi":"10.1002/asia.202401036","DOIUrl":null,"url":null,"abstract":"<p><p>The nanostructured assembly of different two-dimensional (2D) materials in specific organization is crucial for developing materials with synergistic properties. In this study, we present a general methodology to prepare thin, transparent and self-assembled films of 2D/2D composites based on molybdenum sulfide (MoS<sub>2</sub>)/graphene oxide (GO) or MoS<sub>2</sub>/reduced graphene oxide (rGO), through the liquid/liquid interfacial route. Different nanoarchitectures are obtained by changing simple experimental parameters during the thin film preparation steps. The films were characterized by UV-Vis and Raman spectroscopy, scanning electron microscopy and cyclic voltammetry, evidencing that the experimental route used plays a role in the organization and properties of the assembled nanoarchitectures. Likewise, nanostructures of MoS<sub>2</sub>/GO and MoS<sub>2</sub>/rGO prepared through the same route have different organizations due to the different interactions between the materials. This showcases the potential of the technique to prepare tailored nanoarchitectures with specific properties for various applications, paving the way for innovative nanotechnology and materials science applications.</p>","PeriodicalId":145,"journal":{"name":"Chemistry - An Asian Journal","volume":" ","pages":"e202401036"},"PeriodicalIF":3.5000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry - An Asian Journal","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1002/asia.202401036","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/13 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The nanostructured assembly of different two-dimensional (2D) materials in specific organization is crucial for developing materials with synergistic properties. In this study, we present a general methodology to prepare thin, transparent and self-assembled films of 2D/2D composites based on molybdenum sulfide (MoS2)/graphene oxide (GO) or MoS2/reduced graphene oxide (rGO), through the liquid/liquid interfacial route. Different nanoarchitectures are obtained by changing simple experimental parameters during the thin film preparation steps. The films were characterized by UV-Vis and Raman spectroscopy, scanning electron microscopy and cyclic voltammetry, evidencing that the experimental route used plays a role in the organization and properties of the assembled nanoarchitectures. Likewise, nanostructures of MoS2/GO and MoS2/rGO prepared through the same route have different organizations due to the different interactions between the materials. This showcases the potential of the technique to prepare tailored nanoarchitectures with specific properties for various applications, paving the way for innovative nanotechnology and materials science applications.
期刊介绍:
Chemistry—An Asian Journal is an international high-impact journal for chemistry in its broadest sense. The journal covers all aspects of chemistry from biochemistry through organic and inorganic chemistry to physical chemistry, including interdisciplinary topics.
Chemistry—An Asian Journal publishes Full Papers, Communications, and Focus Reviews.
A professional editorial team headed by Dr. Theresa Kueckmann and an Editorial Board (headed by Professor Susumu Kitagawa) ensure the highest quality of the peer-review process, the contents and the production of the journal.
Chemistry—An Asian Journal is published on behalf of the Asian Chemical Editorial Society (ACES), an association of numerous Asian chemical societies, and supported by the Gesellschaft Deutscher Chemiker (GDCh, German Chemical Society), ChemPubSoc Europe, and the Federation of Asian Chemical Societies (FACS).