Modeling Many-Body Interactions in Water with Gaussian Process Regression.

IF 2.7 2区 化学 Q3 CHEMISTRY, PHYSICAL
Yulian T Manchev, Paul L A Popelier
{"title":"Modeling Many-Body Interactions in Water with Gaussian Process Regression.","authors":"Yulian T Manchev, Paul L A Popelier","doi":"10.1021/acs.jpca.4c05873","DOIUrl":null,"url":null,"abstract":"<p><p>We report a first-principles water dimer potential that captures many-body interactions through Gaussian process regression (GPR). Modeling is upgraded from previous work by using a custom kernel function implemented through the KeOps library, allowing for much larger GPR models to be constructed and interfaced with the next-generation machine learning force field FFLUX. A new synthetic water dimer data set, called WD24, is used for model training. The resulting models can predict 90% of dimer geometries within chemical accuracy for a test set and in a simulation. The curvature of the potential energy surface is captured by the models, and a successful geometry optimization is completed with a total energy error of just 2.6 kJ mol<sup>-1</sup>, from a starting structure where water molecules are separated by nearly 4.3 Å. Dimeric modeling of a flexible, noncrystalline system with FFLUX is shown for the first time.</p>","PeriodicalId":59,"journal":{"name":"The Journal of Physical Chemistry A","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry A","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpca.4c05873","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We report a first-principles water dimer potential that captures many-body interactions through Gaussian process regression (GPR). Modeling is upgraded from previous work by using a custom kernel function implemented through the KeOps library, allowing for much larger GPR models to be constructed and interfaced with the next-generation machine learning force field FFLUX. A new synthetic water dimer data set, called WD24, is used for model training. The resulting models can predict 90% of dimer geometries within chemical accuracy for a test set and in a simulation. The curvature of the potential energy surface is captured by the models, and a successful geometry optimization is completed with a total energy error of just 2.6 kJ mol-1, from a starting structure where water molecules are separated by nearly 4.3 Å. Dimeric modeling of a flexible, noncrystalline system with FFLUX is shown for the first time.

利用高斯过程回归建立水中多体相互作用模型
我们报告了通过高斯过程回归(GPR)捕捉多体相互作用的第一原理水二聚体势垒。通过使用通过 KeOps 库实现的自定义核函数,建模工作在之前工作的基础上进行了升级,从而可以构建更大的 GPR 模型,并与下一代机器学习力场 FFLUX 相连接。一个名为 WD24 的新合成水二聚体数据集被用于模型训练。在测试集和模拟中,生成的模型可以预测 90% 的二聚体几何形状,其化学准确度在 90% 以内。模型捕捉到了势能面的曲率,从水分子相距近 4.3 Å 的起始结构出发,成功完成了几何优化,总能量误差仅为 2.6 kJ mol-1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
The Journal of Physical Chemistry A
The Journal of Physical Chemistry A 化学-物理:原子、分子和化学物理
CiteScore
5.20
自引率
10.30%
发文量
922
审稿时长
1.3 months
期刊介绍: The Journal of Physical Chemistry A is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信