{"title":"Chemical Roadmap toward Stable Electrolyte–Electrode Interfaces in All-Solid-State Batteries","authors":"Chuhong Wang, Siwen Wang, Chen Ling","doi":"10.1021/acsenergylett.4c01618","DOIUrl":null,"url":null,"abstract":"All-solid-state batteries (ASSBs) hold significant promise for enhanced safety, energy density, and power density compared to conventional lithium-ion batteries. However, their development is impeded by the growth of resistance and diminished cell performance due to the interfacial reactivity between the electrodes and solid-state electrolytes. Comprehensive knowledge of interface reactions and effective mitigation strategies are essential to unlock the potential of ASSBs. Herein, we introduce the concept of a stability network to encode chemical and electrochemical reactions among lithium and non-lithium compounds within a comprehensive and complex network structure. Through analyzing the topological structure of the stability network, we reveal an organized and chemically instructive pattern of two-phase reactions and equilibria under different electrochemical conditions. This understanding of intrinsic patterns in relation to compositional, chemical, and electrochemical variables offers a set of principles for the experimental design and engineering of interfaces, serving as a chemical roadmap for achieving stable electrolyte–electrode interfaces in ASSBs.","PeriodicalId":16,"journal":{"name":"ACS Energy Letters ","volume":"40 1","pages":""},"PeriodicalIF":19.3000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Energy Letters ","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsenergylett.4c01618","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
All-solid-state batteries (ASSBs) hold significant promise for enhanced safety, energy density, and power density compared to conventional lithium-ion batteries. However, their development is impeded by the growth of resistance and diminished cell performance due to the interfacial reactivity between the electrodes and solid-state electrolytes. Comprehensive knowledge of interface reactions and effective mitigation strategies are essential to unlock the potential of ASSBs. Herein, we introduce the concept of a stability network to encode chemical and electrochemical reactions among lithium and non-lithium compounds within a comprehensive and complex network structure. Through analyzing the topological structure of the stability network, we reveal an organized and chemically instructive pattern of two-phase reactions and equilibria under different electrochemical conditions. This understanding of intrinsic patterns in relation to compositional, chemical, and electrochemical variables offers a set of principles for the experimental design and engineering of interfaces, serving as a chemical roadmap for achieving stable electrolyte–electrode interfaces in ASSBs.
ACS Energy Letters Energy-Renewable Energy, Sustainability and the Environment
CiteScore
31.20
自引率
5.00%
发文量
469
审稿时长
1 months
期刊介绍:
ACS Energy Letters is a monthly journal that publishes papers reporting new scientific advances in energy research. The journal focuses on topics that are of interest to scientists working in the fundamental and applied sciences. Rapid publication is a central criterion for acceptance, and the journal is known for its quick publication times, with an average of 4-6 weeks from submission to web publication in As Soon As Publishable format.
ACS Energy Letters is ranked as the number one journal in the Web of Science Electrochemistry category. It also ranks within the top 10 journals for Physical Chemistry, Energy & Fuels, and Nanoscience & Nanotechnology.
The journal offers several types of articles, including Letters, Energy Express, Perspectives, Reviews, Editorials, Viewpoints and Energy Focus. Additionally, authors have the option to submit videos that summarize or support the information presented in a Perspective or Review article, which can be highlighted on the journal's website. ACS Energy Letters is abstracted and indexed in Chemical Abstracts Service/SciFinder, EBSCO-summon, PubMed, Web of Science, Scopus and Portico.