{"title":"Palygorskite-mediated simultaneous nutrient removal and antibiotic degradation from aquaculture wastewater in lab-scale constructed wetlands","authors":"Chenglong Xu, Cuifang Zhu, Yunhao Li, Hanlin Zhang, Weiguang Lv","doi":"10.1016/j.cej.2024.156568","DOIUrl":null,"url":null,"abstract":"In this study, palygorskite was employed as a substrate in laboratory-scale constructed wetlands (CWs) over a period of 180 days to investigate the removal efficiency of pollutants from mariculture wastewater under high loads of enrofloxacin (ENR) stress. The results indicated that the incorporation of palygorskite into CWs resulted in average effluent concentrations of total phosphorus (TP), total nitrogen (TN), chemical oxygen demand (COD), and ENR reaching 0.07 ± 0.00 mg/L, 1.07 ± 0.06 mg/L, 11.57 ± 1.04 mg/L, and 0.047 ± 0.002 mg/L, respectively. The removal efficiencies reached 96.45 ± 0.04 %, 94.62 ± 0.27 %, 88.61 ± 1.22 %, and 91.14 ± 5.00 % respectively, with phosphorus removal significantly surpassing that reported for similar CWs. This superior performance was mainly attributed to the strong binding mechanisms between phosphorus and the metal oxides and hydroxides leached from the palygorskite. The palygorskite stimulated the secretion of extracellular polymeric substances (EPS), accelerated biofilm establishment, and enhanced the relative abundance of key functional bacteria associated with carbon, nitrogen, and antibiotic removal, thus achieving rapid denitrification and efficient organic matter removal. Monitoring of metals (Ca, Fe, Mn, and Cu) in the CWs effluent suggested that their presence was insufficient to affect cytoplasmic enzyme activity or cause oxidative stress damage to plants. In conclusion, palygorskite serves as an environmentally friendly, high-nutrient removal alternative, apt as a substrate for CWs.","PeriodicalId":270,"journal":{"name":"Chemical Engineering Journal","volume":"18 1","pages":""},"PeriodicalIF":13.3000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.cej.2024.156568","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, palygorskite was employed as a substrate in laboratory-scale constructed wetlands (CWs) over a period of 180 days to investigate the removal efficiency of pollutants from mariculture wastewater under high loads of enrofloxacin (ENR) stress. The results indicated that the incorporation of palygorskite into CWs resulted in average effluent concentrations of total phosphorus (TP), total nitrogen (TN), chemical oxygen demand (COD), and ENR reaching 0.07 ± 0.00 mg/L, 1.07 ± 0.06 mg/L, 11.57 ± 1.04 mg/L, and 0.047 ± 0.002 mg/L, respectively. The removal efficiencies reached 96.45 ± 0.04 %, 94.62 ± 0.27 %, 88.61 ± 1.22 %, and 91.14 ± 5.00 % respectively, with phosphorus removal significantly surpassing that reported for similar CWs. This superior performance was mainly attributed to the strong binding mechanisms between phosphorus and the metal oxides and hydroxides leached from the palygorskite. The palygorskite stimulated the secretion of extracellular polymeric substances (EPS), accelerated biofilm establishment, and enhanced the relative abundance of key functional bacteria associated with carbon, nitrogen, and antibiotic removal, thus achieving rapid denitrification and efficient organic matter removal. Monitoring of metals (Ca, Fe, Mn, and Cu) in the CWs effluent suggested that their presence was insufficient to affect cytoplasmic enzyme activity or cause oxidative stress damage to plants. In conclusion, palygorskite serves as an environmentally friendly, high-nutrient removal alternative, apt as a substrate for CWs.
期刊介绍:
The Chemical Engineering Journal is an international research journal that invites contributions of original and novel fundamental research. It aims to provide an international platform for presenting original fundamental research, interpretative reviews, and discussions on new developments in chemical engineering. The journal welcomes papers that describe novel theory and its practical application, as well as those that demonstrate the transfer of techniques from other disciplines. It also welcomes reports on carefully conducted experimental work that is soundly interpreted. The main focus of the journal is on original and rigorous research results that have broad significance. The Catalysis section within the Chemical Engineering Journal focuses specifically on Experimental and Theoretical studies in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. These studies have industrial impact on various sectors such as chemicals, energy, materials, foods, healthcare, and environmental protection.