Interface Engineering with an Organic Aluminum Additive for High-Rate Sodium Metal Batteries

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Xihao Wang, Yehui Wu, Yuhan Zhou, Weiran Zheng, Kun Zhang, Xingyu Ma, Tiansheng Bai, Deping Li, Lijie Ci, Clare P. Grey, Jingyu Lu
{"title":"Interface Engineering with an Organic Aluminum Additive for High-Rate Sodium Metal Batteries","authors":"Xihao Wang, Yehui Wu, Yuhan Zhou, Weiran Zheng, Kun Zhang, Xingyu Ma, Tiansheng Bai, Deping Li, Lijie Ci, Clare P. Grey, Jingyu Lu","doi":"10.1002/adfm.202414041","DOIUrl":null,"url":null,"abstract":"Interface stability is a key to practical applications of high-rate sodium metal batteries (SMBs). The general sodium metal anode (SMA), for example, suffers from an unstable solid electrolyte interface (SEI), which may induce severe dendrite growth and continuous Na consumption, particularly under high rates. At the same time, the cathode electrolyte interface (CEI) of a widely adopted cathode material Na<sub>3</sub>V<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub> (NVP) has to tolerate the massive volume changes during the rapid Na<sup>+</sup> ion intercalation/extraction, resulting in structural degradations and the capacity loss. Here, a facile strategy is reported by introducing aluminum ethoxide to a conventional ether-based electrolyte, to promote the formation of an alumina-rich SEI and CEI, which facilitates the rapid Na<sup>+</sup> ion transport across the interface and promotes the uniform Na deposition. The resultant Na || Na symmetric cell demonstrates a stable cycling of 4800 h at 10 mA cm<sup>−2</sup> and 1 mAh cm<sup>−2</sup>, and a Na || NVP full cell exhibits a high capacity retention of 81.28% after 6000 cycles at 40C. The simultaneous interface engineering of both the Na metal anode and the NVP cathode via the facile organic aluminum additive opens up a new avenue toward practical application of high-rate SMBs.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"9 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202414041","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Interface stability is a key to practical applications of high-rate sodium metal batteries (SMBs). The general sodium metal anode (SMA), for example, suffers from an unstable solid electrolyte interface (SEI), which may induce severe dendrite growth and continuous Na consumption, particularly under high rates. At the same time, the cathode electrolyte interface (CEI) of a widely adopted cathode material Na3V2(PO4)3 (NVP) has to tolerate the massive volume changes during the rapid Na+ ion intercalation/extraction, resulting in structural degradations and the capacity loss. Here, a facile strategy is reported by introducing aluminum ethoxide to a conventional ether-based electrolyte, to promote the formation of an alumina-rich SEI and CEI, which facilitates the rapid Na+ ion transport across the interface and promotes the uniform Na deposition. The resultant Na || Na symmetric cell demonstrates a stable cycling of 4800 h at 10 mA cm−2 and 1 mAh cm−2, and a Na || NVP full cell exhibits a high capacity retention of 81.28% after 6000 cycles at 40C. The simultaneous interface engineering of both the Na metal anode and the NVP cathode via the facile organic aluminum additive opens up a new avenue toward practical application of high-rate SMBs.

Abstract Image

用于高倍率金属钠电池的有机铝添加剂界面工程学
界面稳定性是高倍率钠金属电池(SMB)实际应用的关键。例如,一般的钠金属阳极(SMA)存在固态电解质界面(SEI)不稳定的问题,可能导致严重的枝晶生长和持续的钠消耗,尤其是在高倍率情况下。与此同时,被广泛采用的阴极材料 Na3V2(PO4)3 (NVP) 的阴极电解质界面(CEI)必须承受 Na+ 离子快速插层/萃取过程中的巨大体积变化,从而导致结构退化和容量损失。本文报告了一种简便的策略,即在传统的醚基电解质中引入乙醇铝,以促进富含氧化铝的 SEI 和 CEI 的形成,这有利于 Na+ 离子在界面上的快速传输,并促进 Na 的均匀沉积。由此产生的 Na || Na 对称电池在 10 mA cm-2 和 1 mAh cm-2 条件下可稳定循环 4800 小时,而 Na || NVP 全电池在 40C 条件下循环 6000 次后,容量保持率高达 81.28%。通过简便的有机铝添加剂对 Na 金属阳极和 NVP 阴极同时进行界面工程处理,为高倍率 SMB 的实际应用开辟了一条新途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信