Single-atom RhS bond on defective CdZnS for enhanced photocatalytic hydrogen production

IF 8.1 1区 工程技术 Q1 ENGINEERING, CHEMICAL
Delu Zhang, Chao Zhang, Haipeng Wang, Lulu Jiang, Chao Wang, Tao Zhuang, Zhiguo Lv
{"title":"Single-atom RhS bond on defective CdZnS for enhanced photocatalytic hydrogen production","authors":"Delu Zhang, Chao Zhang, Haipeng Wang, Lulu Jiang, Chao Wang, Tao Zhuang, Zhiguo Lv","doi":"10.1016/j.seppur.2024.130022","DOIUrl":null,"url":null,"abstract":"It is highly necessary but challenging to modify sulfides at the atomic scale to boost the separation of electron-hole pairs for enhanced photocatalytic performance. In this regard, single Rh atoms (Rh<sub>1</sub>) are assembled on CdZnS support with S vacancy defects (def-CZS) through Rh<img alt=\"single bond\" src=\"https://sdfestaticassets-us-east-1.sciencedirectassets.com/shared-assets/55/entities/sbnd.gif\" style=\"vertical-align:middle\"/>S bond, creating a highly efficient photocatalyst. The optimized Rh<sub>1</sub>/def-CZS achieves an outstanding hydrogen evolution activity (30,512 μmol h<sup>−1</sup> g<sup>−1</sup>), 4.32 and 3.34 folds enhancement that of CZS and def-CZS, respectively. The defective CZS support provides abundant S vacancy defects for Rh atom anchoring, where Rh bonds with neighboring S atoms (Rh<img alt=\"single bond\" src=\"https://sdfestaticassets-us-east-1.sciencedirectassets.com/shared-assets/55/entities/sbnd.gif\" style=\"vertical-align:middle\"/>S). Theoretical calculations suggest that Rh can not only act as new H generation-release sites, but also optimize electron distribution around S defects simultaneously through the Rh<img alt=\"single bond\" src=\"https://sdfestaticassets-us-east-1.sciencedirectassets.com/shared-assets/55/entities/sbnd.gif\" style=\"vertical-align:middle\"/>S bond, facilitating the separation of electron-hole pairs. Furthermore, in line with DFT results, in situ Raman confirms Rh (Rh<img alt=\"single bond\" src=\"https://sdfestaticassets-us-east-1.sciencedirectassets.com/shared-assets/55/entities/sbnd.gif\" style=\"vertical-align:middle\"/>H) and electron-rich S atoms (S<img alt=\"single bond\" src=\"https://sdfestaticassets-us-east-1.sciencedirectassets.com/shared-assets/55/entities/sbnd.gif\" style=\"vertical-align:middle\"/>H) two main sites for proton reduction during hydrogen evolution.","PeriodicalId":427,"journal":{"name":"Separation and Purification Technology","volume":null,"pages":null},"PeriodicalIF":8.1000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Separation and Purification Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.seppur.2024.130022","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

It is highly necessary but challenging to modify sulfides at the atomic scale to boost the separation of electron-hole pairs for enhanced photocatalytic performance. In this regard, single Rh atoms (Rh1) are assembled on CdZnS support with S vacancy defects (def-CZS) through RhAbstract ImageS bond, creating a highly efficient photocatalyst. The optimized Rh1/def-CZS achieves an outstanding hydrogen evolution activity (30,512 μmol h−1 g−1), 4.32 and 3.34 folds enhancement that of CZS and def-CZS, respectively. The defective CZS support provides abundant S vacancy defects for Rh atom anchoring, where Rh bonds with neighboring S atoms (RhAbstract ImageS). Theoretical calculations suggest that Rh can not only act as new H generation-release sites, but also optimize electron distribution around S defects simultaneously through the RhAbstract ImageS bond, facilitating the separation of electron-hole pairs. Furthermore, in line with DFT results, in situ Raman confirms Rh (RhAbstract ImageH) and electron-rich S atoms (SAbstract ImageH) two main sites for proton reduction during hydrogen evolution.

Abstract Image

在有缺陷的 CdZnS 上形成单原子 RhS 键,增强光催化制氢能力
在原子尺度上对硫化物进行改性以促进电子-空穴对的分离从而提高光催化性能是非常必要的,但也是极具挑战性的。在这方面,单个 Rh 原子(Rh1)通过 RhS 键组装在具有 S 空位缺陷(def-CZS)的 CdZnS 支承上,形成了一种高效的光催化剂。优化的 Rh1/def-CZS 实现了出色的氢进化活性(30,512 μmol h-1 g-1),分别比 CZS 和 def-CZS 提高了 4.32 倍和 3.34 倍。有缺陷的 CZS 支持为 Rh 原子锚定提供了丰富的 S 空位缺陷,Rh 与邻近的 S 原子(RhS)结合。理论计算表明,Rh 不仅可以作为新的 H 生成释放位点,还可以通过 RhS 键同时优化 S 缺陷周围的电子分布,促进电子-空穴对的分离。此外,与 DFT 结果一致,原位拉曼证实 Rh (RhH) 和富含电子的 S 原子 (SH) 是氢演化过程中质子还原的两个主要位点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Separation and Purification Technology
Separation and Purification Technology 工程技术-工程:化工
CiteScore
14.00
自引率
12.80%
发文量
2347
审稿时长
43 days
期刊介绍: Separation and Purification Technology is a premier journal committed to sharing innovative methods for separation and purification in chemical and environmental engineering, encompassing both homogeneous solutions and heterogeneous mixtures. Our scope includes the separation and/or purification of liquids, vapors, and gases, as well as carbon capture and separation techniques. However, it's important to note that methods solely intended for analytical purposes are not within the scope of the journal. Additionally, disciplines such as soil science, polymer science, and metallurgy fall outside the purview of Separation and Purification Technology. Join us in advancing the field of separation and purification methods for sustainable solutions in chemical and environmental engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信