Optimizing ExoMars Rover Remote Sensing Multispectral Science II: Choosing and Using Multispectral Filters for Dynamic Planetary Surface Exploration With Linear Discriminant Analysis

IF 2.9 3区 地球科学 Q2 ASTRONOMY & ASTROPHYSICS
R. B. Stabbins, P. M. Grindrod, S. Motaghian, E. J. Allender, C. R. Cousins
{"title":"Optimizing ExoMars Rover Remote Sensing Multispectral Science II: Choosing and Using Multispectral Filters for Dynamic Planetary Surface Exploration With Linear Discriminant Analysis","authors":"R. B. Stabbins,&nbsp;P. M. Grindrod,&nbsp;S. Motaghian,&nbsp;E. J. Allender,&nbsp;C. R. Cousins","doi":"10.1029/2023EA003398","DOIUrl":null,"url":null,"abstract":"<p>In this paper we address two problems associated with data-limited dynamic spacecraft exploration: data-prioritization for transmission, and data-reduction for interpretation, in the context of ESA ExoMars rover multispectral imaging. We present and explore a strategy for selecting and combining subsets of spectral channels captured from the ExoMars Panoramic Camera, and attempt to seek hematite against a background of phyllosilicates and basalts as a test case scenario, anticipated from orbital studies of the rover landing site. We compute all available dimension reductions on the material reflectance spectra afforded by 4 spectral parameter types, and consider all possible paired combinations of these. We then find the optimal linear combination of each pair whilst evaluating the resultant target-vs.-background separation in terms of the Fisher Ratio and classification accuracy, using Linear Discriminant Analysis. We find ∼50,000 spectral parameter combinations with a classification accuracy &gt;95% that use 6-or-less filters, and that the highest accuracy score is 99.6% using 6 filters, but that an accuracy of &gt;99% can still be achieved with 2 filters. We find that when the more computationally efficient Fisher Ratio is used to rank the combinations, the highest accuracy is 99.1% using 4 filters, and 95.1% when limited to 2 filters. These findings are applicable to the task of time-constrained planning of multispectral observations, and to the evaluation and cross-comparison of multispectral imaging systems at specific material discrimination tasks.</p>","PeriodicalId":54286,"journal":{"name":"Earth and Space Science","volume":"11 10","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023EA003398","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth and Space Science","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2023EA003398","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we address two problems associated with data-limited dynamic spacecraft exploration: data-prioritization for transmission, and data-reduction for interpretation, in the context of ESA ExoMars rover multispectral imaging. We present and explore a strategy for selecting and combining subsets of spectral channels captured from the ExoMars Panoramic Camera, and attempt to seek hematite against a background of phyllosilicates and basalts as a test case scenario, anticipated from orbital studies of the rover landing site. We compute all available dimension reductions on the material reflectance spectra afforded by 4 spectral parameter types, and consider all possible paired combinations of these. We then find the optimal linear combination of each pair whilst evaluating the resultant target-vs.-background separation in terms of the Fisher Ratio and classification accuracy, using Linear Discriminant Analysis. We find ∼50,000 spectral parameter combinations with a classification accuracy >95% that use 6-or-less filters, and that the highest accuracy score is 99.6% using 6 filters, but that an accuracy of >99% can still be achieved with 2 filters. We find that when the more computationally efficient Fisher Ratio is used to rank the combinations, the highest accuracy is 99.1% using 4 filters, and 95.1% when limited to 2 filters. These findings are applicable to the task of time-constrained planning of multispectral observations, and to the evaluation and cross-comparison of multispectral imaging systems at specific material discrimination tasks.

Abstract Image

优化 ExoMars 火星漫游车遥感多光谱科学 II:利用线性判别分析为行星表面动态探测选择和使用多光谱滤波器
在本文中,我们以欧空局 ExoMars 火星漫游车多光谱成像为背景,探讨了与数据有限的动态航天器探测相关的两个问题:传输数据时的数据优先排序和解释数据时的数据缩减。我们提出并探索了一种策略,用于选择和组合从 ExoMars 火星全景照相机捕获的光谱通道子集,并尝试在植硅体和玄武岩背景下寻找赤铁矿,将此作为一个测试案例场景,这是漫游车着陆点轨道研究的预期结果。我们计算了 4 种光谱参数类型提供的材料反射光谱的所有可用维度还原,并考虑了所有可能的配对组合。然后,我们利用线性判别分析法找到每对组合的最佳线性组合,同时从费舍尔比和分类准确性的角度评估目标与背景的分离结果。我们发现使用 6 个或更少滤波器的分类准确率为 95% 的光谱参数组合有 50,000 个,使用 6 个滤波器的最高准确率为 99.6%,但使用 2 个滤波器仍可达到 99% 的准确率。我们发现,如果使用计算效率更高的费舍尔比率对组合进行排序,使用 4 个过滤器的最高准确率为 99.1%,而仅限于 2 个过滤器的准确率为 95.1%。这些发现适用于多光谱观测的时间限制规划任务,也适用于特定物质鉴别任务中多光谱成像系统的评估和交叉比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Earth and Space Science
Earth and Space Science Earth and Planetary Sciences-General Earth and Planetary Sciences
CiteScore
5.50
自引率
3.20%
发文量
285
审稿时长
19 weeks
期刊介绍: Marking AGU’s second new open access journal in the last 12 months, Earth and Space Science is the only journal that reflects the expansive range of science represented by AGU’s 62,000 members, including all of the Earth, planetary, and space sciences, and related fields in environmental science, geoengineering, space engineering, and biogeochemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信