Observed Correlation Between Local Topography and Passive Neutron Measurements From the Dynamic Albedo of Neutrons (DAN) Instrument on the Mars Science Laboratory (MSL) Rover
Steven D. Dibb, Craig Hardgrove, Jack Lightholder, Lena Heffern, Bent Ehresmann
{"title":"Observed Correlation Between Local Topography and Passive Neutron Measurements From the Dynamic Albedo of Neutrons (DAN) Instrument on the Mars Science Laboratory (MSL) Rover","authors":"Steven D. Dibb, Craig Hardgrove, Jack Lightholder, Lena Heffern, Bent Ehresmann","doi":"10.1029/2023EA003130","DOIUrl":null,"url":null,"abstract":"<p>The Dynamic Albedo of Neutrons (DAN) instrument on the Mars Science Laboratory Curiosity rover primarily measures neutrons that have undergone interactions with rocks and materials in the rover's local environment. As the rover ascends Aeolis Mons, it may encounter more extreme local topography (e.g., cliffs, gullies, canyons). We present three parts of the rover's traverse in which local topography, expressed as the average local relief relative to the rover, is moderately to strongly correlated with an increase in passive thermal neutron count rates. These increases in count rates are consistent with results from radiation transport models of the instrument's performance near simulated topographic features. Additional DAN measurements in areas of high average local relief (>0.25 m) within 5 m of the instrument could bolster this correlation. DAN's sensitivity to topography in its passive mode could be utilized as a new measurement capability and has implications for the operation of future landed missions carrying neutron spectrometers (e.g., VIPER, MoonRanger, Lunar-VISE).</p>","PeriodicalId":54286,"journal":{"name":"Earth and Space Science","volume":"11 10","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023EA003130","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth and Space Science","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2023EA003130","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The Dynamic Albedo of Neutrons (DAN) instrument on the Mars Science Laboratory Curiosity rover primarily measures neutrons that have undergone interactions with rocks and materials in the rover's local environment. As the rover ascends Aeolis Mons, it may encounter more extreme local topography (e.g., cliffs, gullies, canyons). We present three parts of the rover's traverse in which local topography, expressed as the average local relief relative to the rover, is moderately to strongly correlated with an increase in passive thermal neutron count rates. These increases in count rates are consistent with results from radiation transport models of the instrument's performance near simulated topographic features. Additional DAN measurements in areas of high average local relief (>0.25 m) within 5 m of the instrument could bolster this correlation. DAN's sensitivity to topography in its passive mode could be utilized as a new measurement capability and has implications for the operation of future landed missions carrying neutron spectrometers (e.g., VIPER, MoonRanger, Lunar-VISE).
期刊介绍:
Marking AGU’s second new open access journal in the last 12 months, Earth and Space Science is the only journal that reflects the expansive range of science represented by AGU’s 62,000 members, including all of the Earth, planetary, and space sciences, and related fields in environmental science, geoengineering, space engineering, and biogeochemistry.