{"title":"Lightweight technology stacks for assistive linked annotations.","authors":"Nishad Thalhath","doi":"10.1186/s44342-024-00021-4","DOIUrl":null,"url":null,"abstract":"<p><p>This report presents the findings of a project from the 8th Biomedical Linked Annotation Hackathon (BLAH) to explore lightweight technology stacks to enhance assistive linked annotations. Using modern JavaScript frameworks and edge functions, in-browser Named Entity Recognition (NER), serverless embedding and vector search within web interfaces, and efficient serverless full-text search were implemented. Through this experimental approach, a proof of concept to demonstrate the feasibility and performance of these technologies was demonstrated. The results show that lightweight stacks can significantly improve the efficiency and cost-effectiveness of annotation tools and provide a local-first, privacy-oriented, and secure alternative to traditional server-based solutions in various use cases. This work emphasizes the potential of developing annotation interfaces that are more responsive, scalable, and user-friendly, which would benefit bioinformatics researchers, practitioners, and software developers.</p>","PeriodicalId":94288,"journal":{"name":"Genomics & informatics","volume":"22 1","pages":"17"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11468380/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genomics & informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s44342-024-00021-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This report presents the findings of a project from the 8th Biomedical Linked Annotation Hackathon (BLAH) to explore lightweight technology stacks to enhance assistive linked annotations. Using modern JavaScript frameworks and edge functions, in-browser Named Entity Recognition (NER), serverless embedding and vector search within web interfaces, and efficient serverless full-text search were implemented. Through this experimental approach, a proof of concept to demonstrate the feasibility and performance of these technologies was demonstrated. The results show that lightweight stacks can significantly improve the efficiency and cost-effectiveness of annotation tools and provide a local-first, privacy-oriented, and secure alternative to traditional server-based solutions in various use cases. This work emphasizes the potential of developing annotation interfaces that are more responsive, scalable, and user-friendly, which would benefit bioinformatics researchers, practitioners, and software developers.