Michaela Dobrovolná , Jean-Louis Mergny , Václav Brázda
{"title":"Complete analysis of G-quadruplex forming sequences in the gapless assembly of human chromosome Y","authors":"Michaela Dobrovolná , Jean-Louis Mergny , Václav Brázda","doi":"10.1016/j.biochi.2024.10.007","DOIUrl":null,"url":null,"abstract":"<div><div>Recent advancements have finally delivered a complete human genome assembly, including the elusive Y chromosome. This accomplishment closes a significant knowledge gap. Prior efforts were hampered by challenges in sequencing repetitive DNA structures such as direct and inverted repeats. We used the G4Hunter algorithm to analyze the presence of G-quadruplex forming sequences (G4s) within the current human reference genome (GRCh38) and the new telomere-to-telomere (T2T) Y chromosome assemblies. This analysis served a dual purpose: identifying the location of potential G4s within the genomes and exploring their association with functionally annotated sequences. Compared to GRCh38, the T2T assembly exhibited a significantly higher prevalence of G-quadruplex forming sequences. Notably, these repeats were abundantly located around precursor RNA, exons, genes, and within protein binding sites. This remarkable co-occurrence of G4-forming sequences with these critical regulatory regions suggests their role in fundamental DNA regulation processes. Our findings indicate that the current human reference genome significantly underestimated the number of G4s, potentially overlooking their functional importance.</div></div>","PeriodicalId":251,"journal":{"name":"Biochimie","volume":"229 ","pages":"Pages 49-57"},"PeriodicalIF":3.3000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimie","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0300908424002335","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Recent advancements have finally delivered a complete human genome assembly, including the elusive Y chromosome. This accomplishment closes a significant knowledge gap. Prior efforts were hampered by challenges in sequencing repetitive DNA structures such as direct and inverted repeats. We used the G4Hunter algorithm to analyze the presence of G-quadruplex forming sequences (G4s) within the current human reference genome (GRCh38) and the new telomere-to-telomere (T2T) Y chromosome assemblies. This analysis served a dual purpose: identifying the location of potential G4s within the genomes and exploring their association with functionally annotated sequences. Compared to GRCh38, the T2T assembly exhibited a significantly higher prevalence of G-quadruplex forming sequences. Notably, these repeats were abundantly located around precursor RNA, exons, genes, and within protein binding sites. This remarkable co-occurrence of G4-forming sequences with these critical regulatory regions suggests their role in fundamental DNA regulation processes. Our findings indicate that the current human reference genome significantly underestimated the number of G4s, potentially overlooking their functional importance.
期刊介绍:
Biochimie publishes original research articles, short communications, review articles, graphical reviews, mini-reviews, and hypotheses in the broad areas of biology, including biochemistry, enzymology, molecular and cell biology, metabolic regulation, genetics, immunology, microbiology, structural biology, genomics, proteomics, and molecular mechanisms of disease. Biochimie publishes exclusively in English.
Articles are subject to peer review, and must satisfy the requirements of originality, high scientific integrity and general interest to a broad range of readers. Submissions that are judged to be of sound scientific and technical quality but do not fully satisfy the requirements for publication in Biochimie may benefit from a transfer service to a more suitable journal within the same subject area.