Dilsa Cemre Akkoc Altinok , Kristin Ohl , Sebastian Volkmer , Geva A. Brandt , Stefan Fritze , Dusan Hirjak
{"title":"3D-optical motion capturing examination of sensori- and psychomotor abnormalities in mental disorders: Progress and perspectives","authors":"Dilsa Cemre Akkoc Altinok , Kristin Ohl , Sebastian Volkmer , Geva A. Brandt , Stefan Fritze , Dusan Hirjak","doi":"10.1016/j.neubiorev.2024.105917","DOIUrl":null,"url":null,"abstract":"<div><div>Sensori-/psychomotor abnormalities refer to a wide range of disturbances in individual motor, affective and behavioral functions that are often observed in mental disorders. However, many of these studies have mainly used clinical rating scales, which can be potentially confounded by observer bias and are not able to detect subtle sensori-/psychomotor abnormalities. Yet, an innovative three-dimensional (3D) optical motion capturing technology (MoCap) can provide more objective and quantifiable data about movements and posture in psychiatric patients. To draw attention to recent rapid progress in the field, we performed a systematic review using PubMed, Medline, Embase, and Web of Science until May 01st 2024. We included 55 studies in the qualitative analysis and gait was the most examined movement. The identified studies suggested that sensori-/psychomotor abnormalities in neurodevelopmental, mood, schizophrenia spectrum and neurocognitive disorders are associated with alterations in spatiotemporal parameters (speed, step width, length and height; stance time, swing time, double limb support time, phases duration, adjusting sway, acceleration, etc.) during various movements such as walking, running, upper body, hand and head movements. Some studies highlighted the advantages of 3D optical MoCap systems over traditional rating scales and measurements such as actigraphy and ultrasound gait analyses. 3D optical MoCap systems are susceptible to detecting differences not only between patients with mental disorders and healthy persons but also among at-risk individuals exhibiting subtle sensori-/psychomotor abnormalities. Overall, 3D optical MoCap systems hold promise for objectively examining sensori-/psychomotor abnormalities, making them valuable tools for use in future clinical trials.</div></div>","PeriodicalId":56105,"journal":{"name":"Neuroscience and Biobehavioral Reviews","volume":"167 ","pages":"Article 105917"},"PeriodicalIF":7.5000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience and Biobehavioral Reviews","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0149763424003865","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Sensori-/psychomotor abnormalities refer to a wide range of disturbances in individual motor, affective and behavioral functions that are often observed in mental disorders. However, many of these studies have mainly used clinical rating scales, which can be potentially confounded by observer bias and are not able to detect subtle sensori-/psychomotor abnormalities. Yet, an innovative three-dimensional (3D) optical motion capturing technology (MoCap) can provide more objective and quantifiable data about movements and posture in psychiatric patients. To draw attention to recent rapid progress in the field, we performed a systematic review using PubMed, Medline, Embase, and Web of Science until May 01st 2024. We included 55 studies in the qualitative analysis and gait was the most examined movement. The identified studies suggested that sensori-/psychomotor abnormalities in neurodevelopmental, mood, schizophrenia spectrum and neurocognitive disorders are associated with alterations in spatiotemporal parameters (speed, step width, length and height; stance time, swing time, double limb support time, phases duration, adjusting sway, acceleration, etc.) during various movements such as walking, running, upper body, hand and head movements. Some studies highlighted the advantages of 3D optical MoCap systems over traditional rating scales and measurements such as actigraphy and ultrasound gait analyses. 3D optical MoCap systems are susceptible to detecting differences not only between patients with mental disorders and healthy persons but also among at-risk individuals exhibiting subtle sensori-/psychomotor abnormalities. Overall, 3D optical MoCap systems hold promise for objectively examining sensori-/psychomotor abnormalities, making them valuable tools for use in future clinical trials.
期刊介绍:
The official journal of the International Behavioral Neuroscience Society publishes original and significant review articles that explore the intersection between neuroscience and the study of psychological processes and behavior. The journal also welcomes articles that primarily focus on psychological processes and behavior, as long as they have relevance to one or more areas of neuroscience.