K Takahashi, H Kiso, E Mihara, J Takagi, Y Tokita, A Murashima-Suginami
{"title":"Development of a new antibody drug to treat congenital tooth agenesis.","authors":"K Takahashi, H Kiso, E Mihara, J Takagi, Y Tokita, A Murashima-Suginami","doi":"10.1016/j.job.2024.10.002","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>This study aimed to develop a therapeutic agent promoting teeth regeneration from autologous tissues for congenital tooth agenesis, specifically for hypodontia (≤ 5 missing congenital teeth, 10% prevalence) and oligodontia (≥ 6 missing congenital teeth, 0.1% prevalence).</p><p><strong>Highlight: </strong>We studied mice genetically deficient in the USAG-1 protein, an antagonist of BMP/Wnt which forms excessive teeth. We identified USAG-1 as a target molecule for increasing the number of teeth. Crossing USAG-1-deficient mice with a congenital tooth agenesis model restored tooth formation. We produced anti-USAG-1 neutralizing antibodies as potential therapeutic agents for the treatment of congenital tooth agenesis. Mice anti-USAG-1 neutralizing antibodies can potentially rescue the developmentally arrested tooth germ programmed to a certain tooth type. A humanized anti-USAG-1 antibody was developed as the final candidate.</p><p><strong>Conclusion: </strong>Targeting USAG-1 shows promise for treating missing congenital tooth. Anti-USAG-1 neutralizing antibodies have been developed and will progress towards clinical trials, which may regenerate missing congenital teeth in conditions, such as hypodontia and oligodontia. The protocol framework for a phase 1 study has been finalized, and preparation for future studies is underway.</p>","PeriodicalId":45851,"journal":{"name":"Journal of Oral Biosciences","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Oral Biosciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.job.2024.10.002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0
Abstract
Background: This study aimed to develop a therapeutic agent promoting teeth regeneration from autologous tissues for congenital tooth agenesis, specifically for hypodontia (≤ 5 missing congenital teeth, 10% prevalence) and oligodontia (≥ 6 missing congenital teeth, 0.1% prevalence).
Highlight: We studied mice genetically deficient in the USAG-1 protein, an antagonist of BMP/Wnt which forms excessive teeth. We identified USAG-1 as a target molecule for increasing the number of teeth. Crossing USAG-1-deficient mice with a congenital tooth agenesis model restored tooth formation. We produced anti-USAG-1 neutralizing antibodies as potential therapeutic agents for the treatment of congenital tooth agenesis. Mice anti-USAG-1 neutralizing antibodies can potentially rescue the developmentally arrested tooth germ programmed to a certain tooth type. A humanized anti-USAG-1 antibody was developed as the final candidate.
Conclusion: Targeting USAG-1 shows promise for treating missing congenital tooth. Anti-USAG-1 neutralizing antibodies have been developed and will progress towards clinical trials, which may regenerate missing congenital teeth in conditions, such as hypodontia and oligodontia. The protocol framework for a phase 1 study has been finalized, and preparation for future studies is underway.