Ron Oliven , Arie Oliven , Mostafa Somri , Alan R. Schwartz , Emilia Hardak
{"title":"Differential neuromotor control of the vertical and longitudinal genioglossus muscle fibers: An overlooked tongue retractor","authors":"Ron Oliven , Arie Oliven , Mostafa Somri , Alan R. Schwartz , Emilia Hardak","doi":"10.1016/j.resp.2024.104354","DOIUrl":null,"url":null,"abstract":"<div><h3>Introduction</h3><div>The genioglossus (GG) is known to be the main tongue protrusor, and therefore plays a major role in breathing. However, due to the fan shape of the GG fibers, it could be assumed that contraction of the anterior fibers of the GG do not cause tongue protrusion. In this study, we examined the effect of contraction of the anterior-vertical fibers of the GG (GG<sub>V</sub>) on the tongue and their EMG activity during wakefulness and sleep. The findings were compared to those of the longitudinal fibers (GG<sub>L</sub>), which, based on their orientation, are responsible for tongue protrusion.</div></div><div><h3>Methods</h3><div>Fine-wire electrode pairs were placed into the GG<sub>V</sub> and GG<sub>L</sub> in 11 patients with untreated OSA. Movement of the tongue during electrical stimulation at each site was videoed. The same electrodes were used to record EMG from both sites during respiratory stimulation by inspiratory loading and CO<sub>2</sub> rebreathing during wakefulness. During sleep, repetitive flow limitation events were induced with low-level CPAP to augment GG activity.</div></div><div><h3>Results</h3><div>In all participants, electrical stimulation of GG<sub>L</sub> and GG<sub>V</sub> protruded and retracted the tongue, respectively. Respiratory stimulation increased GG activity, but GG<sub>V</sub> reached only 39 % and 23 % of peak GG<sub>L</sub> activity during high resistive loading and PCO<sub>2</sub> of 65 mmHg, respectively. Flow limitation during sleep increased GG<sub>L</sub> to levels that were considerably higher than awake baseline, but GG<sub>V</sub> activity remained tonic or with minimal phasic activity, reaching on average 15 % of GG<sub>L</sub> peak activity.</div></div><div><h3>Conclusions</h3><div>Our electrical stimulation findings indicate that GG<sub>V</sub> is a tongue retractor and depressor. Tongue stimulation for OSA should avoid this area. The EMG results demonstrate that the anterior part of the GG is controlled very differently from the longitudinal protrusive fibers. The GG<sub>V</sub> responses are similar to those previously found in tongue retractors and peri-pharyngeal muscles other than the GG, in which diminished activation during sleep is likely to be involved in the failure of increasing GG<sub>L</sub> activity to alleviate flow limitation.</div></div>","PeriodicalId":20961,"journal":{"name":"Respiratory Physiology & Neurobiology","volume":"331 ","pages":"Article 104354"},"PeriodicalIF":1.9000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Respiratory Physiology & Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569904824001472","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction
The genioglossus (GG) is known to be the main tongue protrusor, and therefore plays a major role in breathing. However, due to the fan shape of the GG fibers, it could be assumed that contraction of the anterior fibers of the GG do not cause tongue protrusion. In this study, we examined the effect of contraction of the anterior-vertical fibers of the GG (GGV) on the tongue and their EMG activity during wakefulness and sleep. The findings were compared to those of the longitudinal fibers (GGL), which, based on their orientation, are responsible for tongue protrusion.
Methods
Fine-wire electrode pairs were placed into the GGV and GGL in 11 patients with untreated OSA. Movement of the tongue during electrical stimulation at each site was videoed. The same electrodes were used to record EMG from both sites during respiratory stimulation by inspiratory loading and CO2 rebreathing during wakefulness. During sleep, repetitive flow limitation events were induced with low-level CPAP to augment GG activity.
Results
In all participants, electrical stimulation of GGL and GGV protruded and retracted the tongue, respectively. Respiratory stimulation increased GG activity, but GGV reached only 39 % and 23 % of peak GGL activity during high resistive loading and PCO2 of 65 mmHg, respectively. Flow limitation during sleep increased GGL to levels that were considerably higher than awake baseline, but GGV activity remained tonic or with minimal phasic activity, reaching on average 15 % of GGL peak activity.
Conclusions
Our electrical stimulation findings indicate that GGV is a tongue retractor and depressor. Tongue stimulation for OSA should avoid this area. The EMG results demonstrate that the anterior part of the GG is controlled very differently from the longitudinal protrusive fibers. The GGV responses are similar to those previously found in tongue retractors and peri-pharyngeal muscles other than the GG, in which diminished activation during sleep is likely to be involved in the failure of increasing GGL activity to alleviate flow limitation.
期刊介绍:
Respiratory Physiology & Neurobiology (RESPNB) publishes original articles and invited reviews concerning physiology and pathophysiology of respiration in its broadest sense.
Although a special focus is on topics in neurobiology, high quality papers in respiratory molecular and cellular biology are also welcome, as are high-quality papers in traditional areas, such as:
-Mechanics of breathing-
Gas exchange and acid-base balance-
Respiration at rest and exercise-
Respiration in unusual conditions, like high or low pressure or changes of temperature, low ambient oxygen-
Embryonic and adult respiration-
Comparative respiratory physiology.
Papers on clinical aspects, original methods, as well as theoretical papers are also considered as long as they foster the understanding of respiratory physiology and pathophysiology.