Unraveling abiotic organic synthesis pathways in the mafic crust of mid-ocean ridges.

IF 9.4 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Jingbo Nan, Xiaotong Peng, Oliver Plümper, Iris C Ten Have, Jing-Guang Lu, Qian-Bao Liu, Shao-Lin Li, Yingjie Hu, Yu Liu, Zhen Shen, Weiqi Yao, Renbiao Tao, Martina Preiner, Yongxiang Luo
{"title":"Unraveling abiotic organic synthesis pathways in the mafic crust of mid-ocean ridges.","authors":"Jingbo Nan, Xiaotong Peng, Oliver Plümper, Iris C Ten Have, Jing-Guang Lu, Qian-Bao Liu, Shao-Lin Li, Yingjie Hu, Yu Liu, Zhen Shen, Weiqi Yao, Renbiao Tao, Martina Preiner, Yongxiang Luo","doi":"10.1073/pnas.2308684121","DOIUrl":null,"url":null,"abstract":"<p><p>The aqueous alteration of the oceanic lithosphere provides significant energy that impacts the synthesis and diversity of organic compounds, which are crucial for the deep carbon cycle and may have provided the first building blocks for life. Although abiotic organic synthesis has been documented in mantle-derived rocks, the formation mechanisms and complexity of organic compounds in crustal rocks remain largely unknown. Here, we show the specific association of aliphatic carbonaceous matter with Fe oxyhydroxides in mafic crustal rocks of the Southwest Indian Ridge (SWIR). We determine potential Fe-based pathways for abiotic organic synthesis from CO<sub>2</sub> and H<sub>2</sub> using multimodal and molecular nano-geochemical tools. Quantum mechanical modeling is further employed to constrain the catalytical activity of Fe oxyhydroxides, revealing that the catalytic cycle of hydrogen may play a key role in carbon-carbon bond formation. This approach offers the possibility of interpreting physicochemical organic formation and condensation mechanisms at an atomic scale. The findings expand our knowledge of the existence of abiotic organic carbon in the oceanic crustal rocks and emphasize the mafic oceanic crust of the SWIR as a potential site for low-temperature abiotic organic synthesis.</p>","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":null,"pages":null},"PeriodicalIF":9.4000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2308684121","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/10 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The aqueous alteration of the oceanic lithosphere provides significant energy that impacts the synthesis and diversity of organic compounds, which are crucial for the deep carbon cycle and may have provided the first building blocks for life. Although abiotic organic synthesis has been documented in mantle-derived rocks, the formation mechanisms and complexity of organic compounds in crustal rocks remain largely unknown. Here, we show the specific association of aliphatic carbonaceous matter with Fe oxyhydroxides in mafic crustal rocks of the Southwest Indian Ridge (SWIR). We determine potential Fe-based pathways for abiotic organic synthesis from CO2 and H2 using multimodal and molecular nano-geochemical tools. Quantum mechanical modeling is further employed to constrain the catalytical activity of Fe oxyhydroxides, revealing that the catalytic cycle of hydrogen may play a key role in carbon-carbon bond formation. This approach offers the possibility of interpreting physicochemical organic formation and condensation mechanisms at an atomic scale. The findings expand our knowledge of the existence of abiotic organic carbon in the oceanic crustal rocks and emphasize the mafic oceanic crust of the SWIR as a potential site for low-temperature abiotic organic synthesis.

揭示大洋中脊岩浆岩壳的非生物有机合成途径。
海洋岩石圈的水蚀作用提供了大量能量,影响了有机化合物的合成和多样性,而有机化合物对深层碳循环至关重要,并可能为生命提供了最初的构成元素。虽然在地幔衍生岩石中已经有非生物有机合成的记录,但地壳岩石中有机化合物的形成机制和复杂性在很大程度上仍不为人所知。在这里,我们展示了西南印度洋脊(SWIR)岩浆岩壳岩石中脂肪族碳质与铁氧氢氧化物的特殊关联。我们利用多模式和分子纳米地球化学工具,确定了基于铁的非生物有机合成 CO2 和 H2 的潜在途径。量子力学建模被进一步用于约束氧化铁的催化活性,揭示了氢的催化循环可能在碳-碳键的形成中发挥关键作用。这种方法提供了在原子尺度上解释物理化学有机物形成和缩合机制的可能性。这些发现拓展了我们对大洋地壳岩石中存在非生物有机碳的认识,并强调了西南印度洋的岩浆大洋地壳是低温非生物有机合成的潜在场所。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
19.00
自引率
0.90%
发文量
3575
审稿时长
2.5 months
期刊介绍: The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信