Ingridy Izabella Vieira Cardoso, Marcela Nunes Rosa, Daniel Antunes Moreno, Letícia Maria Barbosa Tufi, Lorrayne Pereira Ramos, Larissa Alessandra Bourdeth Pereira, Lenilson Silva, Janaina Mello Soares Galvão, Isabela Cristiane Tosi, André Van Helvoort Lengert, Marcelo Cavalcanti Da Cruz, Silvia Aparecida Teixeira, Rui Manuel Reis, Luiz Fernando Lopes, Mariana Tomazini Pinto
{"title":"Cisplatin‑resistant germ cell tumor models: An exploration of the epithelial‑mesenchymal transition regulator <i>SLUG</i>.","authors":"Ingridy Izabella Vieira Cardoso, Marcela Nunes Rosa, Daniel Antunes Moreno, Letícia Maria Barbosa Tufi, Lorrayne Pereira Ramos, Larissa Alessandra Bourdeth Pereira, Lenilson Silva, Janaina Mello Soares Galvão, Isabela Cristiane Tosi, André Van Helvoort Lengert, Marcelo Cavalcanti Da Cruz, Silvia Aparecida Teixeira, Rui Manuel Reis, Luiz Fernando Lopes, Mariana Tomazini Pinto","doi":"10.3892/mmr.2024.13352","DOIUrl":null,"url":null,"abstract":"<p><p>Germ cell tumors (GCTs) constitute diverse neoplasms arising in the gonads or extragonadal locations. Testicular GCTs (TGCTs) are the predominant solid tumors in adolescents and young men. Despite cisplatin serving as the primary therapeutic intervention for TGCTs, 10‑20% of patients with advanced disease demonstrate resistance to cisplatin‑based chemotherapy, and epithelial‑mesenchymal transition (EMT) is a potential contributor to this resistance. EMT is regulated by various factors, including the snail family transcriptional repressor 2 (<i>SLUG</i>) transcriptional factor, and, to the best of our knowledge, remains unexplored within TGCTs. Therefore, the present study investigated the EMT transcription factor <i>SLUG</i> in TGCTs. <i>In silico</i> analyses were performed to investigate the expression of EMT markers in TGCTs. In addition, a cisplatin‑resistant model for TGCTs was developed using the NTERA‑2 cell line, and a mouse model was also established. Subsequently, EMT was assessed both <i>in vitro</i> and <i>in vivo</i> within the cisplatin‑resistant models using quantitative PCR and western blot analyses. The results of the <i>in silico</i> analysis showed that the different histologies exhibited distinct expression profiles for EMT markers. Seminomas exhibited a lower expression of EMT markers, whereas embryonal carcinomas and mixed GCT demonstrated high expression. Notably, patients with lower <i>SLUG</i> expression had longer median progression‑free survival (46.4 months vs. 28.0 months, P=0.022). In the <i>in vitro</i> analysis, EMT‑associated genes [fibronectin; vimentin (<i>VIM</i>); actin, α2, smooth muscle; collagen type I α1; transforming growth factor‑β1; and <i>SLUG</i>] were upregulated in the cisplatin‑resistant NTERA‑2 (NTERA‑2R) cell line after 72 h of cisplatin treatment. Consistent with this finding, the NTERA‑2R mouse model demonstrated a significant upregulation in the expression levels of VIM and SLUG. In conclusion, the present findings suggested that <i>SLUG</i> may serve a crucial role in connecting EMT with the development of cisplatin resistance, and targeting <i>SLUG</i> may be a putative therapeutic strategy to mitigate cisplatin resistance.</p>","PeriodicalId":18818,"journal":{"name":"Molecular medicine reports","volume":"30 6","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11484538/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular medicine reports","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3892/mmr.2024.13352","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/11 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Germ cell tumors (GCTs) constitute diverse neoplasms arising in the gonads or extragonadal locations. Testicular GCTs (TGCTs) are the predominant solid tumors in adolescents and young men. Despite cisplatin serving as the primary therapeutic intervention for TGCTs, 10‑20% of patients with advanced disease demonstrate resistance to cisplatin‑based chemotherapy, and epithelial‑mesenchymal transition (EMT) is a potential contributor to this resistance. EMT is regulated by various factors, including the snail family transcriptional repressor 2 (SLUG) transcriptional factor, and, to the best of our knowledge, remains unexplored within TGCTs. Therefore, the present study investigated the EMT transcription factor SLUG in TGCTs. In silico analyses were performed to investigate the expression of EMT markers in TGCTs. In addition, a cisplatin‑resistant model for TGCTs was developed using the NTERA‑2 cell line, and a mouse model was also established. Subsequently, EMT was assessed both in vitro and in vivo within the cisplatin‑resistant models using quantitative PCR and western blot analyses. The results of the in silico analysis showed that the different histologies exhibited distinct expression profiles for EMT markers. Seminomas exhibited a lower expression of EMT markers, whereas embryonal carcinomas and mixed GCT demonstrated high expression. Notably, patients with lower SLUG expression had longer median progression‑free survival (46.4 months vs. 28.0 months, P=0.022). In the in vitro analysis, EMT‑associated genes [fibronectin; vimentin (VIM); actin, α2, smooth muscle; collagen type I α1; transforming growth factor‑β1; and SLUG] were upregulated in the cisplatin‑resistant NTERA‑2 (NTERA‑2R) cell line after 72 h of cisplatin treatment. Consistent with this finding, the NTERA‑2R mouse model demonstrated a significant upregulation in the expression levels of VIM and SLUG. In conclusion, the present findings suggested that SLUG may serve a crucial role in connecting EMT with the development of cisplatin resistance, and targeting SLUG may be a putative therapeutic strategy to mitigate cisplatin resistance.
期刊介绍:
Molecular Medicine Reports is a monthly, peer-reviewed journal available in print and online, that includes studies devoted to molecular medicine, underscoring aspects including pharmacology, pathology, genetics, neurosciences, infectious diseases, molecular cardiology and molecular surgery. In vitro and in vivo studies of experimental model systems pertaining to the mechanisms of a variety of diseases offer researchers the necessary tools and knowledge with which to aid the diagnosis and treatment of human diseases.