Defining the segmental tension generated in a vertebral body tethering system for scoliosis.

IF 2.1 3区 医学 Q2 ORTHOPEDICS
Vidyadhar V Upasani, Christine L Farnsworth, Jason P Caffrey, Tony Olmert, Ian Brink, Phoebe Cain, Erin Mannen
{"title":"Defining the segmental tension generated in a vertebral body tethering system for scoliosis.","authors":"Vidyadhar V Upasani, Christine L Farnsworth, Jason P Caffrey, Tony Olmert, Ian Brink, Phoebe Cain, Erin Mannen","doi":"10.1002/jor.25995","DOIUrl":null,"url":null,"abstract":"<p><p>Vertebral body tethering (VBT) uses a flexible tether affixed across the curve convexity with tension applied at each segment to treat scoliosis. Intraoperative tether tension may be achieved directly with a counter-tensioner or with an extension spring tube. The purpose of this study was to quantify the force generated with and without the extension spring tube using current FDA-approved VBT instrumentation, to understand the variation between surgeons using the same instrumentation, and to define the force range that is generated intra-operatively. Using a benchtop mechanical testing setup to simulate a spinal segment, we affixed the tether and applied tension using a tensioner and counter-tensioner alone (method T1) or by adding an extension spring tube (method T2). Eight orthopedic surgeons used T1 and T2 at six tensioner settings, and one surgeon completed three trials. A two-way ANOVA with a Tukey's HSD post hoc test (p < 0.05) compared the tensioner methods and testing levels. Inter- and intra-rater reliabilities were calculated using intraclass correlation coefficients (ICCs). Methods T1 and T2 exhibited linear tension-setting relationships, with high determination coefficients (R<sup>2</sup> > 0.93). T2 consistently produced higher forces (increase of 62.1 N/setting), compared to T1 (increase of 50.6 N/setting, p < 0.05). Inter-rater reliability exhibited excellent agreement (ICC = 0.951 and 0.943 for T1 and T2, respectively), as did intra-rater reliability (ICC = 0.971).</p>","PeriodicalId":16650,"journal":{"name":"Journal of Orthopaedic Research®","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Orthopaedic Research®","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/jor.25995","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ORTHOPEDICS","Score":null,"Total":0}
引用次数: 0

Abstract

Vertebral body tethering (VBT) uses a flexible tether affixed across the curve convexity with tension applied at each segment to treat scoliosis. Intraoperative tether tension may be achieved directly with a counter-tensioner or with an extension spring tube. The purpose of this study was to quantify the force generated with and without the extension spring tube using current FDA-approved VBT instrumentation, to understand the variation between surgeons using the same instrumentation, and to define the force range that is generated intra-operatively. Using a benchtop mechanical testing setup to simulate a spinal segment, we affixed the tether and applied tension using a tensioner and counter-tensioner alone (method T1) or by adding an extension spring tube (method T2). Eight orthopedic surgeons used T1 and T2 at six tensioner settings, and one surgeon completed three trials. A two-way ANOVA with a Tukey's HSD post hoc test (p < 0.05) compared the tensioner methods and testing levels. Inter- and intra-rater reliabilities were calculated using intraclass correlation coefficients (ICCs). Methods T1 and T2 exhibited linear tension-setting relationships, with high determination coefficients (R2 > 0.93). T2 consistently produced higher forces (increase of 62.1 N/setting), compared to T1 (increase of 50.6 N/setting, p < 0.05). Inter-rater reliability exhibited excellent agreement (ICC = 0.951 and 0.943 for T1 and T2, respectively), as did intra-rater reliability (ICC = 0.971).

确定脊柱侧弯椎体系绳系统产生的节段张力。
椎体系带术(VBT)是利用横跨曲线凸面的柔性系带,在每个节段施加张力来治疗脊柱侧弯。术中系带张力可通过反张力器或延伸弹簧管直接实现。本研究的目的是量化使用目前经 FDA 批准的 VBT 器械在使用和不使用拉伸弹簧管时产生的力,了解使用相同器械的外科医生之间的差异,并确定术中产生的力的范围。我们使用台式机械测试装置模拟脊柱节段,粘贴系绳,并单独使用拉伸器和反拉伸器(方法 T1)或添加拉伸弹簧管(方法 T2)施加拉力。八名骨科医生在六种拉伸器设置下使用了 T1 和 T2 方法,其中一名外科医生完成了三次试验。进行了双向方差分析和 Tukey's HSD 事后检验(p 2 > 0.93)。与 T1(每组增加 50.6 牛顿,p 2 > 0.93)相比,T2 产生的力始终较高(每组增加 62.1 牛顿)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Orthopaedic Research®
Journal of Orthopaedic Research® 医学-整形外科
CiteScore
6.10
自引率
3.60%
发文量
261
审稿时长
3-6 weeks
期刊介绍: The Journal of Orthopaedic Research is the forum for the rapid publication of high quality reports of new information on the full spectrum of orthopaedic research, including life sciences, engineering, translational, and clinical studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信